ﻻ يوجد ملخص باللغة العربية
We present thermoelectric power and resistivity measurements in the ferromagnetic superconductor URhGe for magnetic field applied along the hard magnetization b axis of the orthorhombic crystal. Reentrant superconductivity is observed near the the spin reorientation transition at $H_{R}$=12.75 T, where a first order transition from the ferromagnetic to the polarized paramagnetic state occurs. Special focus is given to the longitudinal configuration, where both electric and heat current are parallel to the applied field. The validity of the Fermi-liquid $T^2$ dependence of the resistivity through $H_R$ demonstrates clearly that no quantum critical point occurs at $H_R$. Thus the ferromagnetic transition line at $H_R$ becomes first order implying the existence of a tricritical point at finite temperature. The enhancement of magnetic fluctuations in the vicinity of the tricritical point stimulates the reentrance of superconductivity. The abrupt sign change observed in the thermoelectric power with the thermal gradient applied along the b axis together with the strong anomalies in the other directions is a definitive macroscopic evidence that in addition a significant change of the Fermi surface appears through $H_R$.
The field-reentrant (field-reinforced) superconductivity on ferromagnetic superconductors is one of the most interesting topics in unconventional superconductivity. The enhancement of effective mass and the induced ferromagnetic fluctuations play key
We report thermoelectric and resitivity measurements of antiferromagnetic heavy fermion compound YRh2Si2 at low temperatures down and under high magnetic field. At low temperature, the thermoelectric power and the resistivity present several distinct
In some metals containing a sub-lattice of rare earth or actinide ions, free local $f$ spins at high temperatures dissolve into the sea of quantum conduction electrons at low temperatures, where they become mobile excitations. Once mobile, the spins
In most unconventional superconductors, like the high-Tc cuprates, iron pnictides, or heavy fermion systems, superconductivity emerges in the proximity of an electronic instability. Identifying unambiguously the pairing mechanism remains nevertheless
Solids with strong electron correlations generally develop exotic phases of electron matter at low temperatures. Among such systems, the heavy-fermion semi-metal URu2Si2 presents an enigmatic transition at To = 17.5 K to a `hidden order state whose o