ترغب بنشر مسار تعليمي؟ اضغط هنا

Magnetic Polarization and Fermi Surface Instability: Case of YbRh2Si2

292   0   0.0 ( 0 )
 نشر من قبل Georg Knebel
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We report thermoelectric and resitivity measurements of antiferromagnetic heavy fermion compound YRh2Si2 at low temperatures down and under high magnetic field. At low temperature, the thermoelectric power and the resistivity present several distinct anomalies as a function of field around H_0 ~ 9.5 T when the magnetic polarization reaches a critical value. The anomalies are accompanied with a change of sign from negative at low magnetic field to positive at high field (H>H_0) and are resulting from a Lifshitz-type topological transition of the Fermi surface. A logarithmic divergence of S/T at T to 0 K just above H_0 (H=11.5 T) is quite comparable to the well known divergence of S/T in the temperature range above the antiferromagnetic order at H=0 T referred to as non Fermi liquid behavior. The transition will be compared to the well characterized Fermi surface change in CeRu2Si2 at its pseudo-metamagnetic transition.



قيم البحث

اقرأ أيضاً

255 - P.M.C. Rourke 2009
Magnetic-field-induced changes of the Fermi surface play a central role in theories of the exotic quantum criticality of YbRh2Si2. We have carried out de Haas-van Alphen measurements in the magnetic-field range 8 T <= H <= 16 T, and directly observe field dependence of the extremal Fermi surface areas. Our data support the theory that a low-field large Fermi surface, including the Yb 4f quasihole, is increasingly spin split until a majority-spin branch undergoes a Lifshitz transition and disappears at H0 ~ 10 T, without requiring 4f localization at H0.
379 - P.M.C. Rourke 2008
We present quantum oscillation measurements of YbRh2Si2 at magnetic fields above the Kondo-suppression scale H0 ~ 10 T. Comparison with electronic structure calculations is complicated because the small Fermi surface, where the Yb 4f-quasi-hole is no t contributing to the Fermi volume, and large Fermi surface, where the Yb 4f-quasi-hole is contributing to the Fermi volume, are related by a rigid Fermi energy shift. This means that spin-split branches of the large Fermi surface can look like unsplit branches of the small surface, and vice-versa. Thus, although the high-field angle dependence of the experimentally-measured oscillation frequencies most resembles the electronic structure prediction for the small Fermi surface, this may instead be a branch of the spin-split large Fermi surface.
We present thermoelectric power and resistivity measurements in the ferromagnetic superconductor URhGe for magnetic field applied along the hard magnetization b axis of the orthorhombic crystal. Reentrant superconductivity is observed near the the sp in reorientation transition at $H_{R}$=12.75 T, where a first order transition from the ferromagnetic to the polarized paramagnetic state occurs. Special focus is given to the longitudinal configuration, where both electric and heat current are parallel to the applied field. The validity of the Fermi-liquid $T^2$ dependence of the resistivity through $H_R$ demonstrates clearly that no quantum critical point occurs at $H_R$. Thus the ferromagnetic transition line at $H_R$ becomes first order implying the existence of a tricritical point at finite temperature. The enhancement of magnetic fluctuations in the vicinity of the tricritical point stimulates the reentrance of superconductivity. The abrupt sign change observed in the thermoelectric power with the thermal gradient applied along the b axis together with the strong anomalies in the other directions is a definitive macroscopic evidence that in addition a significant change of the Fermi surface appears through $H_R$.
Solids with strong electron correlations generally develop exotic phases of electron matter at low temperatures. Among such systems, the heavy-fermion semi-metal URu2Si2 presents an enigmatic transition at To = 17.5 K to a `hidden order state whose o rder parameter remains unknown after 23 years of intense research. Various experiments point to the reconstruction and partial gapping of the Fermi surface when the hidden-order establishes. However, up to now, the question of how this transition affects the electronic spectrum at the Fermi surface has not been directly addressed by a spectroscopic probe. Here we show, using angle-resolved photoemission spectroscopy, that a band of heavy quasi-particles drops below the Fermi level upon the transition to the hidden-order state. Our data provide the first direct evidence of a large reorganization of the electronic structure across the Fermi surface of URu2Si2 occurring during this transition, and unveil a new kind of Fermi-surface instability in correlated electron systems
The ground state of the quantum kagome antiferromagnet Zn-brochantite, ZnCu$_3$(OH)$_6$SO$_4$, which is one of only a few known spin-liquid (SL) realizations in two or three dimensions, has been described as a gapless SL with a spinon Fermi surface. Employing nuclear magnetic resonance in a broad magnetic-field range down to millikelvin temperatures, we show that in applied magnetic fields this enigmatic state is intrinsically unstable against a SL with a full or a partial gap. A similar instability of the gapless Fermi-surface SL was previously encountered in an organic triangular-lattice antiferromagnet, suggesting a common destabilization mechanism that most likely arises from spinon pairing. A salient property of this instability is that an infinitesimal field suffices to induce it, as predicted theoretically for some other types of gapless SLs.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا