ﻻ يوجد ملخص باللغة العربية
We present a method of broadening the dynamic range of optical interferometric detection of cantilever displacement. The key idea of this system is to use a wavelength-tunable laser source. The wavelength is subject to proportional-integral control, which is used to keep the cavity detuning constant during a measurement. Under this control, the change in wavelength is proportional to the cantilever displacement. Using this technique, we can measure large displacements ($>1 mathrm{mu m}$) without degradation of sensitivity. We apply this technique to high-frequency electron spin resonance spectroscopy and succeed in removing an irregular background signal that arises from the constantly varying sensitivity of the interferometer.
Ultrahigh-resolution fiber-optic sensing has been demonstrated with a meter-long, high-finesse fiber Fabry-Perot interferometer (FFPI). The main technical challenge of large, environment-induced resonance frequency drift is addressed by locking the i
This note presents a method to tune the resonant frequency $f_{0}$ of a rectangular microwave cavity. This is achieved using a liquid metal, GaInSn, to decrease the volume of the cavity. It is possible to shift $f_{0}$ by filling the cavity with this
We build a resonant fiber optic gyro based on Kagome hollow-core fiber. A semi-bulk cavity architecture based on a 18-m-long Kagome fiber permits to achieve a cavity finesse of 23 with a resonance linewidth of 700 kHz. An optimized Pound-Drever-Hall
We experimentally demonstrate a simple and robust protocol for the detection of weak radio-frequency magnetic fields using a single electron spin in diamond. Our method relies on spin locking, where the Rabi frequency of the spin is adjusted to match
A sensor that integrates high sensitivity micro-Hall effect magnetometry and high-frequency electron paramagnetic resonance spectroscopy capabilities on a single semiconductor chip is presented. The Hall-effect magnetometer was fabricated from a two