ترغب بنشر مسار تعليمي؟ اضغط هنا

The Interplay between Frustration and Entanglement in Many-Body Systems

165   0   0.0 ( 0 )
 نشر من قبل Beatrix Hiesmayr C.
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Frustration of classical many-body systems can be used to distinguish ferromagnetic interactions from anti-ferromagnetic ones via the Toulouse conditions. A quantum version of the Toulouse conditions provides a similar classification based on the local ground states. We compute the global ground states for a family of models with Heisenberg-like interactions and analyse their behaviour with respect to frustration, entanglement and degeneracy. For that we develop analytical and numerical analysing tools capable to quantify the interplay between those three quantities. We find that the quantum Toulouse conditions provide a proper classification, however, refinements can be found. Our results show how the different local ground states affect the interplay and pave the way for further generalisation and possible applications to other quantum many-body systems.

قيم البحث

اقرأ أيضاً

We derive an exact lower bound to a universal measure of frustration in degenerate ground states of quantum many-body systems. The bound results in the sum of two contributions: entanglement and classical correlations arising from local measurements. We show that average frustration properties are completely determined by the behavior of the maximally mixed ground state. We identify sufficient conditions for a quantum spin system to saturate the bound, and for models with twofold degeneracy we prove that average and local frustration coincide.
Bridging the second law of thermodynamics and microscopic reversible dynamics has been a longstanding problem in statistical physics. We here address this problem on the basis of quantum many-body physics, and discuss how the entropy production satur ates in isolated quantum systems under unitary dynamics. First, we rigorously prove the saturation of the entropy production in the long time regime, where a total system can be in a pure state. Second, we discuss the non-negativity of the entropy production at saturation, implying the second law of thermodynamics. This is based on the eigenstate thermalization hypothesis (ETH), which states that even a single energy eigenstate is thermal. We also numerically demonstrate that the entropy production saturates at a non-negative value even when the initial state of a heat bath is a single energy eigenstate. Our results reveal fundamental properties of the entropy production in isolated quantum systems at late times.
Non-locality is a fundamental trait of quantum many-body systems, both at the level of pure states, as well as at the level of mixed states. Due to non-locality, mixed states of any two subsystems are correlated in a stronger way than what can be acc ounted for by considering correlated probabilities of occupying some microstates. In the case of equilibrium mixed states, we explicitly build two-point quantum correlation functions, which capture the specific, superior correlations of quantum systems at finite temperature, and which are directly { accessible to experiments when correlating measurable properties}. When non-vanishing, these correlation functions rule out a precise form of separability of the equilibrium state. In particular, we show numerically that quantum correlation functions generically exhibit a finite emph{quantum coherence length}, dictating the characteristic distance over which degrees of freedom cannot be considered as separable. This coherence length is completely disconnected from the correlation length of the system -- as it remains finite even when the correlation length of the system diverges at finite temperature -- and it unveils the unique spatial structure of quantum correlations.
We present a general scheme for the study of frustration in quantum systems. We introduce a universal measure of frustration for arbitrary quantum systems and we relate it to a class of entanglement monotones via an exact inequality. If all the (pure ) ground states of a given Hamiltonian saturate the inequality, then the system is said to be inequality saturating. We introduce sufficient conditions for a quantum spin system to be inequality saturating and confirm them with extensive numerical tests. These conditions provide a generalization to the quantum domain of the Toulouse criteria for classical frustration-free systems. The models satisfying these conditions can be reasonably identified as geometrically unfrustrated and subject to frustration of purely quantum origin. Our results therefore establish a unified framework for studying the intertwining of geometric and quantum contributions to frustration.
We consider a dynamic protocol for quantum many-body systems, which enables to study the interplay between unitary Hamiltonian driving and random local projective measurements. While the unitary dynamics tends to increase entanglement, local measurem ents tend to disentangle, thus favoring decoherence. Close to a quantum transition where the system develops critical correlations with diverging length scales, the competition of the two drivings is analyzed within a dynamic scaling framework, allowing us to identify a regime (dynamic scaling limit) where the two mechanisms develop a nontrivial interplay. We perform a numerical analysis of this protocol in a measurement-driven Ising chain, which supports the scaling laws we put forward. The local measurement process generally tends to suppress quantum correlations, even in the dynamic scaling limit. The power law of the decay of the quantum correlations turns out to be enhanced at the quantum transition.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا