ترغب بنشر مسار تعليمي؟ اضغط هنا

Feedback in Clouds II: UV Photoionisation and the first supernova in a massive cloud

89   0   0.0 ( 0 )
 نشر من قبل Sam Geen
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Molecular cloud structure is regulated by stellar feedback in various forms. Two of the most important feedback processes are UV photoionisation and supernovae from massive stars. However, the precise response of the cloud to these processes, and the interaction between them, remains an open question. In particular, we wish to know under which conditions the cloud can be dispersed by feedback, which in turn can give us hints as to how feedback regulates the star formation inside the cloud. We perform a suite of radiative magnetohydrodynamic simulations of a 10^5 solar mass cloud with embedded sources of ionising radiation and supernovae, including multiple supernovae and a hypernova model. A UV source corresponding to 10% of the mass of the cloud is required to disperse the cloud, suggesting that the star formation efficiency should be on the order of 10%. A single supernova is unable to significantly affect the evolution of the cloud. However, energetic hypernovae and multiple supernovae are able to add significant quantities of momentum to the cloud, approximately 10^{43} g cm/s of momentum per 10^{51} ergs of supernova energy. This is on the lower range of estimates in other works, since dense gas clumps that remain embedded inside the HII region cause rapid cooling in the supernova blast. We argue that supernovae alone are unable to regulate star formation in molecular clouds, and that strong pre-supernova feedback is required to allow supernova blastwaves to propagate efficiently into the interstellar medium

قيم البحث

اقرأ أيضاً

We present a new set of analytic models for the expansion of HII regions powered by UV photoionisation from massive stars and compare them to a new suite of radiative magnetohydrodynamic simulations of turbulent, self-gravitating molecular clouds. To perform these simulations we use the Eulerian adaptive mesh magnetohydrodynamics code RAMSES-RT, including radiative transfer of UV photons. Our analytic models successfully predict the global behaviour of the HII region provided the density and velocity structure of the cloud is known. We give estimates for the HII region behaviour based on a power law fit to the density field assuming that the system is virialised. We give a radius at which the ionisation front should stop expanding (stall). If this radius is smaller than the distance to the edge of the cloud, the HII region will be trapped by the cloud. This effect is more severe in collapsing clouds than in virialised clouds, since the density in the former increases dramatically over time, with much larger photon emission rates needed for the HII region to escape a collapsing cloud. We also measure the response of Jeans unstable gas to the HII regions to predict the impact of UV radiation on star formation in the cloud. We find that the mass in unstable gas can be explained by a model in which the clouds are evaporated by UV photons, suggesting that the net feedback on star formation should be negative
Giant Molecular Clouds (GMCs) are observed to be turbulent, but theory shows that without a driving mechanism turbulence should quickly decay. The question arises by which mechanisms turbulence is driven or sustained. It has been shown that photoioni sing feedback from massive stars has an impact on the surrounding GMC and can for example create vast HII bubbles. We therefore address the question of whether turbulence is a consequence of this effect of feedback on the cloud. To investigate this, we analyse the velocity field of simulations of high mass star forming regions by studying velocity structure functions and power spectra. We find that clouds whose morphology is strongly affected by photoionising feedback also show evidence of driving of turbulence by preserving or recovering a Kolmogorov-type velocity field. On the contrary, control run simulations without photoionising feedback have a velocity distribution that bears the signature of gravitational collapse and of the dissipation of energy, where the initial Kolmogorov-type structure function is erased.
Feedback from supernovae is often invoked as an important process in limiting star formation, removing gas from galaxies and hence as a determining process in galaxy formation. Here we report on numerical simulations investigating the interaction bet ween supernova explosions and the natal molecular cloud. We also consider the cases with and without previous feedback from the high-mass star in the form of ionising radiation and stellar winds. The supernova is able to find weak points in the cloud and create channels through which it can escape, leaving much of the well shielded cloud largely unaffected. This effect is increased when the channels are pre-existing due to the effects of previous stellar feedback. The expanding supernova deposits its energy in the gas that is in these exposed channels, and hence sweeps up less mass when feedback has already occurred, resulting in faster outflows with less radiative losses. The full impact of the supernova explosion is then able to impact the larger scale of the galaxy in which it abides. We conclude that supernova explosions only have moderate effects on their dense natal environments but that with pre-existing feedback, the energetic effects of the supernova are able to escape and affect the wider scale medium of the galaxy.
UV radiation feedback from young massive stars plays a key role in the evolution of giant molecular clouds (GMCs) by photoevaporating and ejecting the surrounding gas. We conduct a suite of radiation hydrodynamic simulations of star cluster formation in marginally-bound, turbulent GMCs, focusing on the effects of photoionization and radiation pressure on regulating the net star formation efficiency (SFE) and cloud lifetime. We find that the net SFE depends primarily on the initial gas surface density, $Sigma_0$, such that the SFE increases from 4% to 51% as $Sigma_0$ increases from $13,M_{odot},{rm pc}^{-2}$ to $1300,M_{odot},{rm pc}^{-2}$. Cloud destruction occurs within $2$-$10,{rm Myr}$ after the onset of radiation feedback, or within $0.6$-$4.1$ freefall times (increasing with $Sigma_0$). Photoevaporation dominates the mass loss in massive, low surface-density clouds, but because most photons are absorbed in an ionization-bounded Str{o}mgren volume the photoevaporated gas fraction is proportional to the square root of the SFE. The measured momentum injection due to thermal and radiation pressure forces is proportional to $Sigma_0^{-0.74}$, and the ejection of neutrals substantially contributes to the disruption of low-mass and/or high-surface density clouds. We present semi-analytic models for cloud dispersal mediated by photoevaporation and by dynamical mass ejection, and show that the predicted net SFE and mass loss efficiencies are consistent with the results of our numerical simulations.
We present the results of analyses of the 12CO (J=1-0), 13CO (J=1-0), and 12CO (J=2-1) emission data toward Gum 31. Three molecular clouds separated in velocity were detected at -25, -20, and -10 km/s . The velocity structure of the molecular clouds in Gum 31 cannot be interpreted as expanding motion. Two of them, the -25 km/s cloud and the -20 km/s cloud, are likely associated with Gum 31, because their 12CO (J=2-1)/12CO (J=1-0) intensity ratios are high. We found that these two clouds show the observational signatures of cloud-cloud collisions (CCCs): a complementary spatial distribution and a V-shaped structure (bridge features) in the position-velocity diagram. In addition, their morphology and velocity structures are very similar to the numerical simulations conducted by the previous studies. We propose a scenario that the -25 km/s cloud and the -20 km/s cloud were collided and triggered the formation of the massive star system HD 92206 in Gum 31. This scenario can explain the offset of the stars from the center and the morphology of Gum 31 simultaneously. The timescale of the collision was estimated to be ~1 Myr by using the ratio between the path length of the collision and the assumed velocity separation. This is consistent with that of the CCCs in Carina Nebula Complex in our previous study.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا