ﻻ يوجد ملخص باللغة العربية
Feedback from supernovae is often invoked as an important process in limiting star formation, removing gas from galaxies and hence as a determining process in galaxy formation. Here we report on numerical simulations investigating the interaction between supernova explosions and the natal molecular cloud. We also consider the cases with and without previous feedback from the high-mass star in the form of ionising radiation and stellar winds. The supernova is able to find weak points in the cloud and create channels through which it can escape, leaving much of the well shielded cloud largely unaffected. This effect is increased when the channels are pre-existing due to the effects of previous stellar feedback. The expanding supernova deposits its energy in the gas that is in these exposed channels, and hence sweeps up less mass when feedback has already occurred, resulting in faster outflows with less radiative losses. The full impact of the supernova explosion is then able to impact the larger scale of the galaxy in which it abides. We conclude that supernova explosions only have moderate effects on their dense natal environments but that with pre-existing feedback, the energetic effects of the supernova are able to escape and affect the wider scale medium of the galaxy.
In interstellar clouds the deposition of water ice onto grains only occurs at visual extinctions above some threshold value A_th. At extinctions greater than A_th there is a (near-linear) correlation between the inferred column density of the water i
We present simulations of a 500 pc$^2$ region, containing gas of mass 4 $times$ 10$^6$ M$_odot$, extracted from an entire spiral galaxy simulation, scaled up in resolution, including photoionising feedback from stars of mass > 18 M$_odot$. Our region
It is a major open question which physical processes stop the accretion of gas onto giant molecular clouds (GMCs) and limit the efficiency at which gas is converted into stars within these GMCs. While feedback from supernova explosions has been the p
Supernovae from core-collapse of massive stars drive shocks into the molecular clouds from which the stars formed. Such shocks affect future star formation from the molecular clouds, and the fast-moving, dense gas with compressed magnetic fields is a
Giant Molecular Clouds (GMCs) are observed to be turbulent, but theory shows that without a driving mechanism turbulence should quickly decay. The question arises by which mechanisms turbulence is driven or sustained. It has been shown that photoioni