ﻻ يوجد ملخص باللغة العربية
A graph $G$ is a $k$-prime product distance graph if its vertices can be labeled with distinct integers such that for any two adjacent vertices, the difference of their labels is the product of at most $k$ primes. A graph has prime product number $ppn(G)=k$ if it is a $k$-prime product graph but not a $(k-1)$-prime product graph. Similarly, $G$ is a prime $k$th-power graph (respectively, strict prime $k$th-power graph) if its vertices can be labeled with distinct integers such that for any two adjacent vertices, the difference of their labels is the $j$th power of a prime, for $j leq k$ (respectively, the $k$th power of a prime exactly). We prove that $ppn(K_n) = lceil log_2(n)rceil - 1$, and for a nonempty $k$-chromatic graph $G$, $ppn(G) = lceil log_2(k)rceil - 1$ or $ppn(G) = lceil log_2(k)rceil$. We determine $ppn(G)$ for all complete bipartite, 3-partite, and 4-partite graphs. We prove that $K_n$ is a prime $k$th-power graph if and only if $n < 7$, and we determine conditions on cycles and outerplanar graphs $G$ for which $G$ is a strict prime $k$th-power graph. We find connections between prime product and prime power distance graphs and the Twin Prime Conjecture, the Green-Tao Theorem, and Fermats Last Theorem.
A coprime labeling of a simple graph of order $n$ is a labeling in which adjacent vertices are given relatively prime labels, and a graph is prime if the labels used can be taken to be the first $n$ positive integers. In this paper, we consider when
In this paper, we enumerate prime graphs with respect to the Cartesian multiplication of graphs. We use the unique factorization of a connected graph into the product of prime graphs given by Sabidussi to find explicit formulas for labeled and unlabe
We explore graph theoretical properties of minimal prime graphs of finite solvable groups. In finite group theory studying the prime graph of a group has been an important topic for the past almost half century. Recently prime graphs of solvable grou
A simple $n$-vertex graph has a prime vertex labeling if the vertices can be injectively labeled with the integers $1, 2, 3,ldots, n$ such that adjacent vertices have relatively prime labels. We will present previously unknown prime vertex labelings
A simple and connected $n$-vertex graph has a prime vertex labeling if the vertices can be injectively labeled with the integers $1, 2, 3,ldots, n$, such that adjacent vertices have relatively prime labels. We will present previously unknown prime ve