ترغب بنشر مسار تعليمي؟ اضغط هنا

Excited Weak Bosons and Dark Matter

292   0   0.0 ( 0 )
 نشر من قبل Harald Fritzsch
 تاريخ النشر 2016
  مجال البحث
والبحث باللغة English
 تأليف Harald Fritzsch




اسأل ChatGPT حول البحث

The weak bosons are bound states of new constituents. The p-wave excitations are studied. The state with the lowest mass is identified with the boson, which has been discovered at the LHC. Specific properties of the excited bosons are discussed, in particular their decays into weak bosons and photons. The stable fermion, consisting of three haplons, provides the dark matter in our universe.

قيم البحث

اقرأ أيضاً

36 - Harald Fritzsch 2016
The weak bosons are bound states of fermions. Here the excitations of the weak bosons are discussed. Especially we study the decays of these excited states into weak bosons and photons.
The addition of new multiplets of fermions charged under the Standard Model gauge group is investigated, with the aim of identifying a possible dark matter candidate. These fermions are charged under $SU(2)times U(1)$, and their quantum numbers are d etermined by requiring all new particles to obtain masses via Yukawa couplings and all triangle anomalies to cancel as in the Standard Model; more than one multiplet is required and we refer to such a set of these multiplets as a polyplet. For sufficiently large multiplets, the stability of the dark matter candidate is ensured by an accidental symmetry; for clarity, however, we introduce a model with a particularly simple polyplet structure and stabilize the dark matter by imposing a new discrete symmetry. We then explore the features of this model; constraints from colliders, electroweak precision measurements, the dark matter relic density, and direct detection experiments are considered. We find that the model can accommodate a viable dark matter candidate for large Higgs boson masses; for $m_Hsim 125$ GeV, a subdominant contribution to the dark matter relic density can be achieved.
107 - Harald Fritzsch 2010
The weak bosons, leptons and quarks are considered as composite particles. The interaction of the constituents is a confining gauge interaction. The standard electroweak model is a low energy approximation. The mixing of the neutral weak boson with t he photon is a dynamical mechanism, similar to the mixing between the photon and the rho-meson in QCD. This mixing provides information about the energy scale of the confining gauge force. It must be less than 1 TeV. At and above this energy many narrow resonances should exist, which decay into weak bosons and into lepton and quark pairs. Above 1 TeV excited leptons should exist, which decay into leptons under emission of a weak boson or a photon. These new states can be observed with the detectors at the Large Hadron Collider in CERN.
We propose a vector dark matter model with an exotic dark SU(2) gauge group. Two Higgs triplets are introduced to spontaneously break the symmetry. All of the dark gauge bosons become massive, and the lightest one is a viable vector DM candidate. Its stability is guaranteed by a remaining Z_2 symmetry. We study the parameter space constrained by the Higgs measurement data, the dark matter relic density, and direct and indirect detection experiments. We find numerous parameter points satisfying all the constraints, and they could be further tested in future experiments. Similar methodology can be used to construct vector dark matter models from an arbitrary SO(N) gauge group.
A long-range fifth force coupled to dark matter can induce a coupling to ordinary matter if the dark matter interacts with Standard Model fields. We consider constraints on such a scenario from both astrophysical observations and laboratory experimen ts. We also examine the case where the dark matter is a weakly interacting massive particle, and derive relations between the coupling to dark matter and the coupling to ordinary matter for different models. Currently, this scenario is most tightly constrained by galactic dynamics, but improvements in Eotvos experiments can probe unconstrained regions of parameter space.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا