ﻻ يوجد ملخص باللغة العربية
We show how to construct a large class of quantum error correcting codes, known as CSS codes, from highly entangled cluster states. This becomes a primitive in a protocol that foliates a series of such cluster states into a much larger cluster state, implementing foliated quantum error correction. We exemplify this construction with several familiar quantum error correction codes, and propose a generic method for decoding foliated codes. We numerically evaluate the error-correction performance of a family of finite-rate CSS codes known as turbo codes, finding that it performs well over moderate depth foliations. Foliated codes have applications for quantum repeaters and fault-tolerant measurement-based quantum computation.
Foliated quantum codes are a resource for fault-tolerant measurement-based quantum error correction for quantum repeaters and for quantum computation. They represent a general approach to integrating a range of possible quantum error correcting codes
We study a quantum analogue of locally decodable error-correcting codes. A q-query locally decodable quantum code encodes n classical bits in an m-qubit state, in such a way that each of the encoded bits can be recovered with high probability by a me
We introduce the concept of generalized concatenated quantum codes. This generalized concatenation method provides a systematical way for constructing good quantum codes, both stabilizer codes and nonadditive codes. Using this method, we construct fa
We study a three-fold variant of the hypergraph product code construction, differing from the standard homological product of three classical codes. When instantiated with 3 classical LDPC codes, this XYZ product yields a non CSS quantum LDPC code wh
We present families of quantum error-correcting codes which are optimal in the sense that the minimum distance is maximal. These maximum distance separable (MDS) codes are defined over q-dimensional quantum systems, where q is an arbitrary prime powe