ترغب بنشر مسار تعليمي؟ اضغط هنا

Locally Decodable Quantum Codes

99   0   0.0 ( 0 )
 نشر من قبل Jop Bri\\\"et
 تاريخ النشر 2008
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Jop Briet




اسأل ChatGPT حول البحث

We study a quantum analogue of locally decodable error-correcting codes. A q-query locally decodable quantum code encodes n classical bits in an m-qubit state, in such a way that each of the encoded bits can be recovered with high probability by a measurement on at most q qubits of the quantum code, even if a constant fraction of its qubits have been corrupted adversarially. We show that such a quantum code can be transformed into a classical q-query locally decodable code of the same length that can be decoded well on average (albeit with smaller success probability and noise-tolerance). This shows, roughly speaking, that q-query quantum codes are not significantly better than q-query classical codes, at least for constant or small q.


قيم البحث

اقرأ أيضاً

Recent efforts in coding theory have focused on building codes for insertions and deletions, called insdel codes, with optimal trade-offs between their redundancy and their error-correction capabilities, as well as efficient encoding and decoding alg orithms. In many applications, polynomial running time may still be prohibitively expensive, which has motivated the study of codes with super-efficient decoding algorithms. These have led to the well-studied notions of Locally Decodable Codes (LDCs) and Locally Correctable Codes (LCCs). Inspired by these notions, Ostrovsky and Paskin-Cherniavsky (Information Theoretic Security, 2015) generalized Hamming LDCs to insertions and deletions. To the best of our knowledge, these are the only known results that study the analogues of Hamming LDCs in channels performing insertions and deletions. Here we continue the study of insdel codes that admit local algorithms. Specifically, we reprove the results of Ostrovsky and Paskin-Cherniavsky for insdel LDCs using a different set of techniques. We also observe that the techniques extend to constructions of LCCs. Specifically, we obtain insdel LDCs and LCCs from their Hamming LDCs and LCCs analogues, respectively. The rate and error-correction capability blow up only by a constant factor, while the query complexity blows up by a poly log factor in the block length. Since insdel locally decodable/correctble codes are scarcely studied in the literature, we believe our results and techniques may lead to further research. In particular, we conjecture that constant-query insdel LDCs/LCCs do not exist.
275 - Hao Chen 2021
The list-decodable code has been an active topic in theoretical computer science since the seminal papers of M. Sudan and V. Guruswami in 1997-1998. There are general result about the Johnson radius and the list-decoding capacity theorem for random c odes. However few results about general constraints on rates, list-decodable radius and list sizes for list-decodable codes have been obtained. In this paper we show that rates, list-decodable radius and list sizes are closely related to the classical topic of covering codes. We prove new simple but strong upper bounds for list-decodable codes based on various covering codes. Then any good upper bound on the covering radius imply a good upper bound on the size of list-decodable codes. Hence the list-decodablity of codes is a strong constraint from the view of covering codes. Our covering code upper bounds for $(d,1)$ list decodable codes give highly non-trivial upper bounds on the sizes of codes with the given minimum Hamming distances. Our results give exponential improvements on the recent generalized Singleton upper bound of Shangguan and Tamo in STOC 2020, when the code lengths are very large. The asymptotic forms of covering code bounds can partially recover the list-decoding capacity theorem, the Blinovsky bound and the combinatorial bound of Guruswami-H{aa}stad-Sudan-Zuckerman. We also suggest to study the combinatorial covering list-decodable codes as a natural generalization of combinatorial list-decodable codes.
Constructing quantum LDPC codes with a minimum distance that grows faster than a square root of the length has been a major challenge of the field. With this challenge in mind, we investigate constructions that come from high-dimensional expanders, i n particular Ramanujan complexes. These naturally give rise to very unbalanced quantum error correcting codes that have a large $X$-distance but a much smaller $Z$-distance. However, together with a classical expander LDPC code and a tensoring method that generalises a construction of Hastings and also the Tillich-Zemor construction of quantum codes, we obtain quantum LDPC codes whose minimum distance exceeds the square root of the code length and whose dimension comes close to a square root of the code length. When the ingredient is a 3-dimensional Ramanujan complex, we show that its 2-systole behaves like a square of the log of the complex size, which results in an overall quantum code of minimum distance $n^{1/2}log n$, and sets a new record for quantum LDPC codes. When we use a 2-dimensional Ramanujan complex, or the 2-skeleton of a 3-dimensional Ramanujan complex, we obtain a quantum LDPC code of minimum distance $n^{1/2}log^{1/2}n$. We then exploit the expansion properties of the complex to devise the first polynomial time algorithm that decodes above the square root barrier for quantum LDPC codes.
We show how to construct a large class of quantum error correcting codes, known as CSS codes, from highly entangled cluster states. This becomes a primitive in a protocol that foliates a series of such cluster states into a much larger cluster state, implementing foliated quantum error correction. We exemplify this construction with several familiar quantum error correction codes, and propose a generic method for decoding foliated codes. We numerically evaluate the error-correction performance of a family of finite-rate CSS codes known as turbo codes, finding that it performs well over moderate depth foliations. Foliated codes have applications for quantum repeaters and fault-tolerant measurement-based quantum computation.
We introduce the concept of generalized concatenated quantum codes. This generalized concatenation method provides a systematical way for constructing good quantum codes, both stabilizer codes and nonadditive codes. Using this method, we construct fa milies of new single-error-correcting nonadditive quantum codes, in both binary and nonbinary cases, which not only outperform any stabilizer codes for finite block length, but also asymptotically achieve the quantum Hamming bound for large block length.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا