ترغب بنشر مسار تعليمي؟ اضغط هنا

Production of Energetic Light Fragments in CEM, LAQGSM, and MCNP6

32   0   0.0 ( 0 )
 نشر من قبل Stepan G. Mashnik
 تاريخ النشر 2016
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We extend the cascade-exciton model (CEM), and the Los Alamos version of the quark-gluon string model (LAQGSM), event generators of the Monte-Carlo N-particle transport code version 6 (MCNP6), to describe production of energetic light fragments (LF) heavier than 4He from various nuclear reactions induced by particles and nuclei at energies up to about 1 TeV/nucleon. In these models, energetic LF can be produced via Fermi break-up, preequilibrium emission, and coalescence of cascade particles. Initially, we study several variations of the Fermi break-up model and choose the best option for these models. Then, we extend the modified exciton model (MEM) used by these codes to account for a possibility of multiple emission of up to 66 types of particles and LF (up to 28Mg) at the preequilibrium stage of reactions. Then, we expand the coalescence model to allow coalescence of LF from nucleons emitted at the intranuclear cascade stage of reactions and from lighter clusters, up to fragments with mass numbers A < 8, in the case of CEM, and A < 13, in the case of LAQGSM. Next, we modify MCNP6 to allow calculating and outputting spectra of LF and heavier products with arbitrary mass and charge numbers. The improved version of CEM is implemented into MCNP6. Finally, we test the improve

قيم البحث

اقرأ أيضاً

The goal of this research is to enable MCNP6 to produce high-energy light fragments. These energetic light fragments may be emitted by our models through three processes: Fermi breakup, preequilibrium, and coalescence. We explore the emission of ligh t fragments through each of these mechanisms and demonstrate an improved agreement with experimental data achieved by extending precompound models to include emission of fragments heavier than $^4$He.
Fragmentation reactions induced on light target nuclei by protons and light nuclei of energies around 1 GeV/nucleon and below are studied with the latest Los Alamos Monte Carlo transport code MCNP6 and with its cascade-exciton model (CEM) and Los Ala mos version of the quark-gluon string model (LAQGSM) event generators, version 03.03, used as stand-alone codes. Such reactions are involved in different applications, like cosmic-ray-induced single event upsets (SEUs), radiation protection, and cancer therapy with proton and ion beams, among others; therefore, it is important that MCNP6 simulates them as well as possible. CEM and LAQGSM assume that intermediate-energy fragmentation reactions on light nuclei occur generally in two stages. The first stage is the intranuclear cascade (INC), followed by the second, Fermi breakup disintegration of light excited residual nuclei produced after INC. Both CEM and LAQGSM account also for coalescence of light fragments (complex particles) up to He4 from energetic nucleons emitted during INC. We investigate the validity and performance of MCNP6, CEM, and LAQGSM in simulating fragmentation reactions at intermediate energies and discuss possible ways of further improving these codes.
Fragmentation reactions induced on light and medium nuclei by protons and light nuclei of energies around 1 GeV/nucleon and below are studied with the Los Alamos transport code MCNP6 and with its CEM03.03 and LAQGSM03.03 event generators. CEM and LAQ GSM assume that intermediate-energy fragmentation reactions on light nuclei occur generally in two stages. The first stage is the intranuclear cascade (INC), followed by the second, Fermi breakup disintegration of light excited residual nuclei produced after the INC. CEM and LAQGSM account also for coalescence of light fragments (complex particles) up to 4He from energetic nucleons emitted during INC. We investigate the validity and performance of MCNP6, CEM, and LAQGSM in simulating fragmentation reactions at intermediate energies and discuss possible ways of further improving these codes
Ion-ion collisions at relativistic energies have been shown recently to be a promising technique for the production of hypernuclei. In this article, we further investigate the production of light $Lambda$ hypernuclei by use of a hybrid dynamical mode l, cascade-coalescence followed by Fermi breakup. The predictions are then compared with the available experimental data. The dependence of the production cross section upon the beam energy, beam mass number as well as different projectile-target combinations is investigated. In particular, we evaluate the yields and signal-over-background ratio in the invariant-mass spectrum for carbon projectiles impinging on hydrogen and carbon targets and various coincidence conditions in the experiment using the theoretical calculation as an input. It is found that comparing with carbon target, hydrogen target also leads to sizable hypernuclear yields, even for exotic species, and the hydrogen target could improve significantly signal-over-background ratio in some hypernuclear invariant mass studies.
Nuclear data for neutron-induced reactions in the intermediate energy range of 20 to 200 MeV are of great importance for the development of nuclear reaction codes since little data exist in that range. Also several different applications benefit from such data, notably accelerator-driven incineration of nuclear waste. The Medley setup was used for a series of measurements of p, d, t, $^3$He and $alpha$-particle production by 175 MeV quasi-mono-energetic neutrons on various target nuclei. The measurements were performed at the The Svedberg Laboratory in Uppsala, Sweden. Eight detector telescopes placed at angles between 20$^circ$ and 160$^circ$ were used. Medley uses the $Delta E$-$Delta E$-$E$ technique to discriminate among the particle types and is able to measure double-differential cross sections over a wide range of particle energies. This paper briefly describes the experimental setup, summarizes the data analysis and reports on recent changes in the previously reported preliminary data set on bismuth. Experimental data are compared with INCL4.5-Abla07, MCNP6 using CEM03.03, TALYS and PHITS model calculations as well as with nuclear data evaluations. The models agree fairly well overall but in some cases systematic differences are found.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا