ترغب بنشر مسار تعليمي؟ اضغط هنا

Inferring monopartite projections of bipartite networks: an entropy-based approach

103   0   0.0 ( 0 )
 نشر من قبل Tiziano Squartini
 تاريخ النشر 2016
والبحث باللغة English




اسأل ChatGPT حول البحث

Bipartite networks are currently regarded as providing a major insight into the organization of many real-world systems, unveiling the mechanisms driving the interactions occurring between distinct groups of nodes. One of the most important issues encountered when modeling bipartite networks is devising a way to obtain a (monopartite) projection on the layer of interest, which preserves as much as possible the information encoded into the original bipartite structure. In the present paper we propose an algorithm to obtain statistically-validated projections of bipartite networks, according to which any two nodes sharing a statistically-significant number of neighbors are linked. Since assessing the statistical significance of nodes similarity requires a proper statistical benchmark, here we consider a set of four null models, defined within the exponential random graph framework. Our algorithm outputs a matrix of link-specific p-values, from which a validated projection is straightforwardly obtainable, upon running a multiple hypothesis testing procedure. Finally, we test our method on an economic network (i.e. the countries-products World Trade Web representation) and a social network (i.e. MovieLens, collecting the users ratings of a list of movies). In both cases non-trivial communities are detected: while projecting the World Trade Web on the countries layer reveals modules of similarly-industrialized nations, projecting it on the products layer allows communities characterized by an increasing level of complexity to be detected; in the second case, projecting MovieLens on the films layer allows clusters of movies whose affinity cannot be fully accounted for by genre similarity to be individuated.



قيم البحث

اقرأ أيضاً

We use the information present in a bipartite network to detect cores of communities of each set of the bipartite system. Cores of communities are found by investigating statistically validated projected networks obtained using information present in the bipartite network. Cores of communities are highly informative and robust with respect to the presence of errors or missing entries in the bipartite network. We assess the statistical robustness of cores by investigating an artificial benchmark network, the co-authorship network, and the actor-movie network. The accuracy and precision of the partition obtained with respect to the reference partition are measured in terms of the adjusted Rand index and of the adjusted Wallace index respectively. The detection of cores is highly precise although the accuracy of the methodology can be limited in some cases.
Many real-world complex systems are well represented as multilayer networks; predicting interactions in those systems is one of the most pressing problems in predictive network science. To address this challenge, we introduce two stochastic block mod els for multilayer and temporal networks; one of them uses nodes as its fundamental unit, whereas the other focuses on links. We also develop scalable algorithms for inferring the parameters of these models. Because our models describe all layers simultaneously, our approach takes full advantage of the information contained in the whole network when making predictions about any particular layer. We illustrate the potential of our approach by analyzing two empirical datasets---a temporal network of email communications, and a network of drug interactions for treating different cancer types. We find that modeling all layers simultaneously does result, in general, in more accurate link prediction. However, the most predictive model depends on the dataset under consideration; whereas the node-based model is more appropriate for predicting drug interactions, the link-based model is more appropriate for predicting email communication.
Multimodal transportation systems can be represented as time-resolved multilayer networks where different transportation modes connecting the same set of nodes are associated to distinct network layers. Their quantitative description became possible recently due to openly accessible datasets describing the geolocalised transportation dynamics of large urban areas. Advancements call for novel analytics, which combines earlier established methods and exploits the inherent complexity of the data. Here, our aim is to provide a novel user-based methodological framework to represent public transportation systems considering the total travel time, its variability across the schedule, and taking into account the number of transfers necessary. Using this framework we analyse public transportation systems in several French municipal areas. We incorporate travel routes and times over multiple transportation modes to identify efficient transportation connections and non-trivial connectivity patterns. The proposed method enables us to quantify the networks overall efficiency as compared to the specific demand and to the car alternative.
Despite the abundance of bipartite networked systems, their organizing principles are less studied, compared to unipartite networks. Bipartite networks are often analyzed after projecting them onto one of the two sets of nodes. As a result of the pro jection, nodes of the same set are linked together if they have at least one neighbor in common in the bipartite network. Even though these projections allow one to study bipartite networks using tools developed for unipartite networks, one-mode projections lead to significant loss of information and artificial inflation of the projected network with fully connected subgraphs. Here we pursue a different approach for analyzing bipartite systems that is based on the observation that such systems have a latent metric structure: network nodes are points in a latent metric space, while connections are more likely to form between nodes separated by shorter distances. This approach has been developed for unipartite networks, and relatively little is known about its applicability to bipartite systems. Here, we fully analyze a simple latent-geometric model of bipartite networks, and show that this model explains the peculiar structural properties of many real bipartite systems, including the distributions of common neighbors and bipartite clustering. We also analyze the geometric information loss in one-mode projections in this model, and propose an efficient method to infer the latent pairwise distances between nodes. Uncovering the latent geometry underlying real bipartite networks can find applications in diverse domains, ranging from constructing efficient recommender systems to understanding cell metabolism.
102 - Dan Lu 2016
Epidemic propagation on complex networks has been widely investigated, mostly with invariant parameters. However, the process of epidemic propagation is not always constant. Epidemics can be affected by various perturbations, and may bounce back to i ts original state, which is considered resilient. Here, we study the resilience of epidemics on networks, by introducing a different infection rate ${lambda_{2}}$ during SIS (susceptible-infected-susceptible) epidemic propagation to model perturbations (control state), whereas the infection rate is ${lambda_{1}}$ in the rest of time. Through simulations and theoretical analysis, we find that even for ${lambda_{2}<lambda_{c}}$, epidemics eventually could bounce back if control duration is below a threshold. This critical control time for epidemic resilience, i.e., ${cd_{max}}$ can be predicted by the diameter (${d}$) of the underlying network, with the quantitative relation ${cd_{max}sim d^{alpha}}$. Our findings can help to design a better mitigation strategy for epidemics.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا