ترغب بنشر مسار تعليمي؟ اضغط هنا

High Tc superconductivity at the interface between the CaCuO2 and SrTiO3 insulating oxides

290   0   0.0 ( 0 )
 نشر من قبل Daniele Di Castro
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

At interfaces between complex oxides it is possible to generate electronic systems with unusual electronic properties, which are not present in the isolated oxides. One important example is the appearance of superconductivity at the interface between insulating oxides, although, until now, with very low Tc. We report the occurrence of high Tc superconductivity in the bilayer CaCuO2/SrTiO3, where both the constituent oxides are insulating. In order to obtain a superconducting state, the CaCuO2/SrTiO3 interface must be realized between the Ca plane of CaCuO2 and the TiO2 plane of SrTiO3. Only in this case extra oxygen ions can be incorporated in the interface Ca plane, acting as apical oxygen for Cu and providing holes to the CuO2 planes. A detailed hole doping spatial profile has been obtained by STEM/EELS at the O K-edge, clearly showing that the (super)conductivity is confined to about 1-2 CaCuO2 unit cells close to the interface with SrTiO3. The results obtained for the CaCuO2/SrTiO3 interface can be extended to multilayered high Tc cuprates, contributing to explain the dependence of Tc on the number of CuO2 planes in these systems.

قيم البحث

اقرأ أيضاً

We report the occurrence of superconductivity, with maximum Tc = 40 K, in superlattices (SLs) based on two insulating oxides, namely CaCuO2 and SrTiO3. In these (CaCuO2)n/(SrTiO3)m SLs, the CuO2 planes belong only to CaCuO2 block, which is an antifer romagnetic insulator. Superconductivity, confined within few unit cells at the CaCuO2/SrTiO3 interface, shows up only when the SLs are grown in a highly oxidizing atmosphere, because of extra oxygen ions entering at the interfaces. Evidence is reported that the hole doping of the CuO2 planes is obtained by charge transfer from the interface layers, which act as charge reservoir.
132 - M. Salluzzo 2014
The conducting quasi-two dimensional electron system (q2DES) formed at the interface between LaAlO3 and SrTiO3 band insulators is confronting the condensed matter physics community with new paradigms. While the mechanism for the formation of the q2DE S is debated, new conducting interfaces have been discovered paving the way to possible applications in electronics, spintronics and optoelectronics. This chapter is an overview of the research on the LAO/STO sys-tem, presenting some of the most important results obtained in the last decade to clarify the mechanism of formation of the q2DES at the oxide interfaces and its peculiar electronic properties as compared to semiconducting 2D-electron gas.
114 - Nan Yang , D. Di Castro , C. Aruta 2012
(CaCuO2)m/(La0.7Sr0.3MnO3)n superlattices, consisting of the infinite layers cuprate CaCuO2 and the optimally doped manganite La1-xSrxMnO3, were grown by pulsed laser deposition. The transport properties are dominated by the manganite block. X-Ray Ab sorption spectroscopy measurements show a clear evidence of an orbital reconstruction at the interface, ascribed to the hybridization between the Cu 3d3z2-r2 and the Mn 3d3z2-r2 orbitals via interface apical oxygen ions. Such a mechanism localizes holes at the interfaces, thus preventing charge transfer to the CaCuO2 block. Some charge (holes) transfer occurs toward the La0.7Sr0.3MnO3 block in strongly oxidized superlattices, contributing to the suppression of the magnetotransport properties.
We show that the growth of the heterostructure LaGaO3/SrTiO3 yields the formation of a highly conductive interface. Our samples were carefully analyzed by high resolution electron microscopy, in order to assess their crystal perfection and to evaluat e the abruptness of the interface. Their carrier density and sheet resistance are compared to the case of LaAlO3/SrTiO3 and a superconducting transition is found. The results open the route to widening the field of polar-non polar interfaces, pose some phenomenological constrains to their underlying physics and highlight the chance of tailoring their properties for future applications by adopting suitable polar materials.
Raman spectra of CaCuO2/SrTiO3 superlattices show clear spectroscopic marker of two structures formed in CaCuO2 at the interface with SrTiO3. For non-superconducting superlattices, grown in low oxidizing atmosphere, the 425 cm-1 frequency of oxygen v ibration in CuO2 planes is the same as for CCO films with infinite layer structure (planar Cu-O coordination). For superconducting superlattices grown in highly oxidizing atmosphere, a 60 cm-1 frequency shift to lower energy occurs. This is ascribed to a change from planar to pyramidal Cu-O coordination because of oxygen incorporation at the interface. Raman spectroscopy proves to be a powerful tool for interface structure investigation.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا