Band-limited functions can oscillate locally at an arbitrarily fast rate through an interference phenomenon known as superoscillations. Using an optical pulse with a superoscillatory envelope we experimentally break the temporal Fourier-transform limit having a temporal feature which is approximately three times shorter than the duration of a transform-limited Gaussian pulse having a comparable bandwidth while maintaining $29.5%$ visibility. Numerical simulations demonstrate the ability of such signals to achieve temporal super-resolution.
Microring optical modulators are being explored extensively for energy-efficient photonic communication networks in future high-performance computing systems and microprocessors, because they can significantly reduce the power consumption of optical
transmitters via the resonant circulation of light. However, resonant modulators have traditionally suffered from a trade-off between their power consumption and maximum operation bit rate, which were thought to depend oppositely upon the cavity linewidth. Here, we break this linewidth limitation using a silicon microring. By controlling the rate at which light enters and exits the microring, we demonstrate modulation free of the parasitic cavity linewidth limitations at up to 40 GHz, more than 6x the cavity linewidth. The device operated at 28 Gb/s using single-ended drive signals less than 1.5 V. The results show that high-Q resonant modulators can be designed to be simultaneously low-power and high-speed, features which are mutually incompatible in typical resonant modulators studied to date.
Super-resolution fluorescence microscopy is an important tool in biomedical research for its ability to discern features smaller than the diffraction limit. However, due to its difficult implementation and high cost, the universal application of supe
r-resolution microscopy is not feasible. In this paper, we propose and demonstrate a new kind of super-resolution fluorescence microscopy that can be easily implemented and requires neither additional hardware nor complex post-processing. The microscopy is based on the principle of stepwise optical saturation (SOS), where $M$ steps of raw fluorescence images are linearly combined to generate an image with a $sqrt{M}$-fold increase in resolution compared with conventional diffraction-limited images. For example, linearly combining (scaling and subtracting) two images obtained at regular powers extends resolution by a factor of $1.4$ beyond the diffraction limit. The resolution improvement in SOS microscopy is theoretically infinite but practically is limited by the signal-to-noise ratio. We perform simulations and experimentally demonstrate super-resolution microscopy with both one-photon (confocal) and multiphoton excitation fluorescence. We show that with the multiphoton modality, the SOS microscopy can provide super-resolution imaging deep in scattering samples.
We propose a method to break the chiral symmetry of light in traveling wave resonators by coupling the optical modes to a lossy channel. Through the engineered dissipation, an indirect dissipative coupling between two oppositely propagating modes can
be realized. Combining with reactive coupling, it can break the chiral symmetry of the resonator, allowing light propagating only in one direction. The chiral symmetry breaking is numerically verified by the simulation of an electromagnetic field in a micro-ring cavity, with proper refractive index distributions. This work provokes us to emphasize the dissipation engineering in photonics, and the generalized idea can also be applied to other systems.
We analyse the temporal properties of the optical pulse wave that is obtained by applying a set of spectral $pi/2$ phase shifts to continuous-wave light that is phase-modulated by a temporal sinusoidal wave. We develop an analytical model to describe
this new optical waveform that we name besselon. We also discuss the reduction of sidelobes in the wave intensity profile by means of an additional spectral $pi$ phase shift, and show that the resulting pulses can be efficiently time-interleaved. The various predicted properties of the besselon are confirmed by experiments demonstrating the generation of low-duty cycle, high-quality pulses at repetition rates up to 28 GHz.
We present a method to simultaneously engineer the energy-momentum dispersion and the local density of optical states. Using vertical symmetry-breaking in high-contrast gratings, we enable the mixing of modes with different parities, thus producing h
ybridized modes with controlled dispersion. By tuning geometric parameters, we control the coupling between Bloch modes, leading to flatband, M- and W-shaped dispersion as well as Dirac dispersion. Such a platform opens up a new way to control the direction of emitted photons, and to enhance the spontaneous emission into desired modes. We then experimentally demonstrate that this method can be used to redirect light emission from weak emitters -- defects in Silicon -- to optical modes with adjustable density of states and angle of emission.