ﻻ يوجد ملخص باللغة العربية
We propose a method to break the chiral symmetry of light in traveling wave resonators by coupling the optical modes to a lossy channel. Through the engineered dissipation, an indirect dissipative coupling between two oppositely propagating modes can be realized. Combining with reactive coupling, it can break the chiral symmetry of the resonator, allowing light propagating only in one direction. The chiral symmetry breaking is numerically verified by the simulation of an electromagnetic field in a micro-ring cavity, with proper refractive index distributions. This work provokes us to emphasize the dissipation engineering in photonics, and the generalized idea can also be applied to other systems.
Optical cavities are a cornerstone of photonics. They are indispensable in lasers, optical filters, optical combs and clocks, in quantum physics, and have enabled the detection of gravitational waves. Cavities transmit light only at discrete resonant
Aluminum nitride is an appealing nonlinear optical material for on-chip wavelength conversion. Here we report optical frequency comb generation from high quality factor aluminum nitride micro-ring resonators integrated on silicon substrates. By engin
The magneto-optical polarization rotation effect has prolific applications in various research areas spanning the scientific spectrum including space and interstellar research, nano-technology and material science, biomedical imaging, and sub-atomic
Microring optical modulators are being explored extensively for energy-efficient photonic communication networks in future high-performance computing systems and microprocessors, because they can significantly reduce the power consumption of optical
We experimentally and theoretically investigate mechanical nanooscillators coupled to the light in an optical ring resonator made of dielectric mirrors. We identify an optomechanical damping mechanism that is fundamentally different to the well known