ﻻ يوجد ملخص باللغة العربية
We present new Herschel PACS observations of 32 T Tauri stars in the young ($sim$3 Myr) $sigma$ Ori cluster. Most of our objects are K & M stars with large excesses at 24 $mu$m. We used irradiated accretion disk models of DAlessio et al. (2006) to compare their spectral energy distributions with our observational data. We arrive at the following six conclusions. (i) The observed disks are consistent with irradiated accretion disks systems. (ii) Most of our objects (60%) can be explained by significant dust depletion from the upper disk layers. (iii) Similarly, 61% of our objects can be modeled with large disk sizes ($rm R_{rm d} geq$ 100 AU). (iv) The masses of our disks range between 0.03 to 39 $rm M_{Jup}$, where 35% of our objects have disk masses lower than 1 Jupiter. Although these are lower limits, high mass ($>$ 0.05 M$_{odot}$) disks, which are present e.g, in Taurus, are missing. (v) By assuming a uniform distribution of objects around the brightest stars at the center of the cluster, we found that 80% of our disks are exposed to external FUV radiation of $300 leq G_{0} leq 1000$, which can be strong enough to photoevaporate the outer edges of the closer disks. (vi) Within 0.6 pc from $sigma$ Ori we found forbidden emission lines of [NII] in the spectrum of one of our large disk (SO662), but no emission in any of our small ones. This suggests that this object may be an example of a photoevaporating disk.
The $sigma$ Orionis cluster is important for studying protoplanetary disk evolution, as its intermediate age ($sim$3-5 Myr) is comparable to the median disk lifetime. We use ALMA to conduct a high-sensitivity survey of dust and gas in 92 protoplaneta
Small solids embedded in gaseous protoplanetary disks are subject to strong dust-gas friction. Consequently, tightly-coupled dust particles almost follow the gas flow. This near conservation of dust-to-gas ratio along streamlines is analogous to the
We present new Spitzer Space Telescope observations of stars in the young ~5 Myr gamma Velorum stellar cluster. Combining optical and 2MASS photometry, we have selected 579 stars as candidate members of the cluster. With the addition of the Spitzer m
We analyze Herschel Space Observatory observations of 104 young stellar objects with protoplanetary disks in the ~1.5 Myr star-forming region Lynds 1641 (L1641) within the Orion A Molecular Cloud. We present spectral energy distributions from the opt
Consistent modeling of protoplanetary disks requires the simultaneous solution of both continuum and line radiative transfer, heating/cooling balance between dust and gas and, of course, chemistry. Such models depend on panchromatic observations that