ترغب بنشر مسار تعليمي؟ اضغط هنا

Consistent dust and gas models for protoplanetary disks IV. A panchromatic view of protoplanetary disks

460   0   0.0 ( 0 )
 نشر من قبل Odysseas Dionatos
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English
 تأليف O. Dionatos




اسأل ChatGPT حول البحث

Consistent modeling of protoplanetary disks requires the simultaneous solution of both continuum and line radiative transfer, heating/cooling balance between dust and gas and, of course, chemistry. Such models depend on panchromatic observations that can provide a complete description of the physical and chemical properties and energy balance of protoplanetary systems. Along these lines we present a homogeneous, panchromatic collection of data on a sample of 85 T Tauri and Herbig Ae objects for which data cover a range from X-rays to centimeter wavelengths. Datasets consist of photometric measurements, spectra, along with results from the data analysis such as line fluxes from atomic and molecular transitions. Additional properties resulting from modeling of the sources such as disc mass and shape parameters. dust size and PAH properties are also provided for completeness. Targets were selected based on their properties data availability. Data from more than 50 different telescopes and facilities were retrieved and combined in homogeneous datasets directly from public data archives or after being extracted from more than 100 published articles. X-ray data for a subset of 56 sources represent an exception as they were reduced from scratch and are presented here for the first time. Compiled datasets along with a subset of continuum and emission-line models are stored in a dedicated database and distributed through a publicly accessible online system. All datasets contain metadata descriptors that allow to backtrack them to their original resources. The graphical user interface of the online system allows the user to visually inspect individual objects but also compare between datasets and models. It also offers to the user the possibility to download any of the stored data and metadata for further processing.


قيم البحث

اقرأ أيضاً

Aims. We define a small and large chemical network which can be used for the quantitative simultaneous analysis of molecular emission from the near-IR to the submm. We revise reactions of excited molecular hydrogen, which are not included in UMIST, t o provide a homogeneous database for future applications. Methods. We use the thermo-chemical disk modeling code ProDiMo and a standard T Tauri disk model to evaluate the impact of various chemical networks, reaction rate databases and sets of adsorption energies on a large sample of chemical species and emerging line fluxes from the near-IR to the submm wavelength range. Results. We find large differences in the masses and radial distribution of ice reservoirs when considering freeze-out on bare or polar ice coated grains. Most strongly the ammonia ice mass and the location of the snow line (water) change. As a consequence molecules associated to the ice lines such as N2H+ change their emitting region; none of the line fluxes in the sample considered here changes by more than 25% except CO isotopologues, CN and N2H+ lines. The three-body reaction N+H2+M plays a key role in the formation of water in the outer disk. Besides that, differences between the UMIST 2006 and 2012 database change line fluxes in the sample considered here by less than a factor 2 (a subset of low excitation CO and fine structure lines stays even within 25%); exceptions are OH, CN, HCN, HCO+ and N2H+ lines. However, different networks such as OSU and KIDA 2011 lead to pronounced differences in the chemistry inside 100 au and thus affect emission lines from high excitation CO, OH and CN lines. H2 is easily excited at the disk surface and state-to-state reactions enhance the abundance of CH+ and to a lesser extent HCO+. For sub-mm lines of HCN, N2H+ and HCO+, a more complex larger network is recommended. ABBREVIATED
430 - P. Woitke , M. Min , C. Pinte 2015
We propose a set of standard assumptions for the modelling of Class II and III protoplanetary disks, which includes detailed continuum radiative transfer, thermo-chemical modelling of gas and ice, and line radiative transfer from optical to cm wavele ngths. We propose new standard dust opacities for disk models, we present a simplified treatment of PAHs sufficient to reproduce the PAH emission features, and we suggest using a simple treatment of dust settling. We roughly adjust parameters to obtain a model that predicts typical Class II T Tauri star continuum and line observations. We systematically study the impact of each model parameter (disk mass, disk extension and shape, dust settling, dust size and opacity, gas/dust ratio, etc.) on all continuum and line observables, in particular on the SED, mm-slope, continuum visibilities, and emission lines including [OI] 63um, high-J CO lines, (sub-)mm CO isotopologue lines, and CO fundamental ro-vibrational lines. We find that evolved dust properties (large grains) often needed to fit the SED, have important consequences for disk chemistry and heating/cooling balance, leading to stronger emission lines in general. Strong dust settling and missing disk flaring have similar effects on continuum observations, but opposite effects on far-IR gas emission lines. PAH molecules can shield the gas from stellar UV radiation because of their strong absorption and negligible scattering opacities. The observable millimetre-slope of the SED can become significantly more gentle in the case of cold disk midplanes, which we find regularly in our T Tauri models. We propose to use line observations of robust chemical tracers of the gas, such as O, CO, and H2, as additional constraints to determine some key properties of the disks, such as disk shape and mass, opacities, and the dust/gas ratio, by simultaneously fitting continuum and line observations.
ALMA observations of protoplanetary disks confirm earlier indications that there is a clear difference between the dust and gas radial extents. The origin of this difference is still debated, with both radial drift of the dust and optical depth effec ts suggested in the literature. In this work, the feedback of realistic dust particle distributions onto the gas chemistry and molecular emissivity is investigated, with a particular focus on CO isotopologues. The radial dust grain size distribution is determined using dust evolution models that include growth, fragmentation and radial drift. A new version of the code DALI is used to take into account how dust surface area and density influence the disk thermal structure, molecular abundances and excitation. The difference of dust and gas radial sizes is largely due to differences in the optical depth of CO lines and millimeter continuum, without the need to invoke radial drift. The effect of radial drift is primarily visible in the sharp outer edge of the continuum intensity profile. The gas outer radius probed by $^{12}$CO emission can easily differ by a factor of $sim 2$ between the models for a turbulent $alpha$ ranging between typical values. Grain growth and settling concur in thermally decoupling the gas and dust components, due to the low collision rate with large grains. As a result, the gas can be much colder than the dust at intermediate heights, reducing the CO excitation and emission, especially for low turbulence values. Also, due to disk mid-plane shadowing, a second CO thermal desorption (rather than photodesorption) front can occur in the warmer outer mid-plane disk. The models are compared to ALMA observations of HD 163296 as a test case. In order to reproduce the observed CO snowline of the system, a binding energy for CO typical of ice mixtures needs to be used rather than the lower pure CO value.
Aims and Methods. Accretion bursts triggered by the magnetorotational instability (MRI) in the innermost disk regions were studied for protoplanetary gas-dust disks formed from prestellar cores of various mass $M_{rm core}$ and mass-to-magnetic flux ratio $lambda$. Numerical magnetohydrodynamics simulations in the thin-disk limit were employed to study the long-term ($sim 1.0$~Myr) evolution of protoplanetary disks with an adaptive turbulent $alpha$-parameter, which depends explicitly on the strength of the magnetic field and ionization fraction in the disk. The numerical models also feature the co-evolution of gas and dust, including the back-reaction of dust on gas and dust growth. Results. Dead zone with a low ionization fraction $x <= 10^{-13}$ and temperature on the order of several hundred Kelvin forms in the inner disk soon after its formation, extending from several to several tens of astronomical units depending on the model. The dead zone features pronounced dust rings that are formed due to the concentration of grown dust particles in the local pressure maxima. Thermal ionization of alkaline metals in the dead zone trigger the MRI and associated accretion burst, which is characterized by a sharp rise, small-scale variability in the active phase, and fast decline once the inner MRI-active region is depleted of matter. The burst occurrence frequency is highest in the initial stages of disk formation, and is driven by gravitational instability (GI), but declines with diminishing disk mass-loading from the infalling envelope. There is a causal link between the initial burst activity and the strength of GI in the disk fueled by mass infall from the envelope. Abridged.
High-energy irradiation of the circumstellar material might impact the structure and the composition of a protoplanetary disk and hence the process of planet formation. In this paper, we present a study on the possible influence of the stellar irradi ation, indicated by X-ray emission, on the crystalline structure of the circumstellar dust. The dust crystallinity is measured for 42 class II T Tauri stars in the Taurus star-forming region using a decomposition fit of the 10 micron silicate feature, measured with the Spitzer IRS instrument. Since the sample includes objects with disks of various evolutionary stages, we further confine the target selection, using the age of the objects as a selection parameter. We correlate the X-ray luminosity and the X-ray hardness of the central object with the crystalline mass fraction of the circumstellar dust and find a significant anti-correlation for 20 objects within an age range of approx. 1 to 4.5 Myr. We postulate that X-rays represent the stellar activity and consequently the energetic ions of the stellar winds which interact with the circumstellar disk. We show that the fluxes around 1 AU and ion energies of the present solar wind are sufficient to amorphize the upper layer of dust grains very efficiently, leading to an observable reduction of the crystalline mass fraction of the circumstellar, sub-micron sized dust. This effect could also erase other relations between crystallinity and disk/star parameters such as age or spectral type.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا