ترغب بنشر مسار تعليمي؟ اضغط هنا

Characterization of Exact Lumpability for Vector Fields on Smooth Manifolds

70   0   0.0 ( 0 )
 نشر من قبل Leonhard Horstmeyer
 تاريخ النشر 2016
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We characterize the exact lumpability of smooth vector fields on smooth manifolds. We derive necessary and sufficient conditions for lumpability and express them from four different perspectives, thus simplifying and generalizing various results from the literature that exist for Euclidean spaces. We introduce a partial connection on the pullback bundle that is related to the Bott connection and behaves like a Lie derivative. The lumping conditions are formulated in terms of the differential of the lumping map, its covariant derivative with respect to the connection and their respective kernels. Some examples are discussed to illustrate the theory.



قيم البحث

اقرأ أيضاً

173 - R. M. Friswell , C. M. Wood 2015
The theory of harmonic vector fields on Riemannian manifolds is generalised to pseudo-Riemannian manifolds. Harmonic conformal gradient fields on pseudo-Euclidean hyperquadrics are classified up to congruence, as are harmonic Killing fields on pseudo -Riemannian quadrics. A para-Kaehler twisted anti-isometry is used to correlate harmonic vector fields on the quadrics of neutral signature.
For a smooth family of exact forms on a smooth manifold, an algorithm for computing a primitive family smoothly dependent on parameters is given. The algorithm is presented in the context of a diagram chasing argument in the v{C}ech-de Rham complex. In addition, explicit formulas for such primitive family are presented.
In this paper, we use a Killing form on a Riemannian manifold to construct a class of Finsler metrics. We find equations that characterize Einstein metrics among this class. In particular, we construct a family of Einstein metrics on $S^3$ with ${rm Ric} = 2 F^2$, ${rm Ric}=0$ and ${rm Ric}=- 2 F^2$, respectively. This family of metrics provide an important class of Finsler metrics in dimension three, whose Ricci curvature is a constant, but the flag curvature is not.
The first purpose of this note is to comment on a recent article of Bursztyn, Lima and Meinrenken, in which it is proved that if M is a smooth submanifold of a manifold V, then there is a bijection between germs of tubular neighborhoods of M and germ s of Euler-like vector fields on V. We shall explain how to approach this bijection through the deformation to the normal cone that is associated to the embedding of M into V. The second purpose is to study generalizations to smooth manifolds equipped with Lie filtrations. Following in the footsteps of several others, we shall define a deformation to the normal cone that is appropriate to this context, and relate it to Euler-like vector fields and tubular neighborhood embeddings.
In this note, we study the dynamics and associated zeta functions of conformally compact manifolds with variable negative sectional curvatures. We begin with a discussion of a larger class of manifolds known as convex co-compact manifolds with variab le negative curvature. Applying results from dynamics on these spaces, we obtain optimal meromorphic extensions of weighted dynamical zeta functions and asymptotic counting estimates for the number of weighted closed geodesics. A meromorphic extension of the standard dynamical zeta function and the prime orbit theorem follow as corollaries. Finally, we investigate interactions between the dynamics and spectral theory of these spaces.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا