ﻻ يوجد ملخص باللغة العربية
In this paper, we use a Killing form on a Riemannian manifold to construct a class of Finsler metrics. We find equations that characterize Einstein metrics among this class. In particular, we construct a family of Einstein metrics on $S^3$ with ${rm Ric} = 2 F^2$, ${rm Ric}=0$ and ${rm Ric}=- 2 F^2$, respectively. This family of metrics provide an important class of Finsler metrics in dimension three, whose Ricci curvature is a constant, but the flag curvature is not.
The theory of harmonic vector fields on Riemannian manifolds is generalised to pseudo-Riemannian manifolds. Harmonic conformal gradient fields on pseudo-Euclidean hyperquadrics are classified up to congruence, as are harmonic Killing fields on pseudo
A supermanifold M is canonically associated to any pseudo Riemannian spin manifold (M_0,g_0). Extending the metric g_0 to a field g of bilinear forms g(p) on T_p M, pin M_0, the pseudo Riemannian supergeometry of (M,g) is formulated as G-structure on
In this paper we study warped product Finsler metrics and show that the notion of isotropic $E$-curvature and isotropic $S$-curvature are equivalent for this class of metrics.
We give a general description of the construction of weighted spherically symmetric metrics on vector bundle manifolds, i.e. the total space of a vector bundle $Erightarrow M$, over a Riemannian manifold $M$, when $E$ is endowed with a metric connect
In this paper, we first prove that homogeneous spaces $E_6/A_4$ and $E_6/A_1$ admit Einstein metrics which are $Ad(Ttimes A_1times A_4)$-invariant, and then show that they admit Non-Riemannian Einstein-Randers metrics.