ترغب بنشر مسار تعليمي؟ اضغط هنا

Modular characteristic classes for representations over finite fields

80   0   0.0 ( 0 )
 نشر من قبل David Sprehn
 تاريخ النشر 2016
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

The cohomology of the degree-$n$ general linear group over a finite field of characteristic $p$, with coefficients also in characteristic $p$, remains poorly understood. For example, the lowest degree previously known to contain nontrivial elements is exponential in $n$. In this paper, we introduce a new system of characteristic classes for representations over finite fields, and use it to construct a wealth of explicit nontrivial elements in these cohomology groups. In particular we obtain nontrivial elements in degrees linear in $n$. We also construct nontrivial elements in the mod $p$ homology and cohomology of the automorphism groups of free groups, and the general linear groups over the integers. These elements reside in the unstable range where the homology and cohomology remain poorly understood.



قيم البحث

اقرأ أيضاً

103 - Wen-Wei Li 2018
It is conjectured by Adams-Vogan and Prasad that under the local Langlands correspondence, the L-parameter of the contragredient representation equals that of the original representation composed with the Chevalley involution of the L-group. We verif y a variant of their prediction for all connected reductive groups over local fields of positive characteristic, in terms of the local Langlands parameterization of Genestier-Lafforgue. We deduce this from a global result for cuspidal automorphic representations over function fields, which is in turn based on a description of the transposes of V. Lafforgues excursion operators.
90 - Xi Xie , Nian Li , Xiangyong Zeng 2021
Let $mathbb{F}_{p^{n}}$ be the finite field with $p^n$ elements and $operatorname{Tr}(cdot)$ be the trace function from $mathbb{F}_{p^{n}}$ to $mathbb{F}_{p}$, where $p$ is a prime and $n$ is an integer. Inspired by the works of Mesnager (IEEE Trans. Inf. Theory 60(7): 4397-4407, 2014) and Tang et al. (IEEE Trans. Inf. Theory 63(10): 6149-6157, 2017), we study a class of bent functions of the form $f(x)=g(x)+F(operatorname{Tr}(u_1x),operatorname{Tr}(u_2x),cdots,operatorname{Tr}(u_{tau}x))$, where $g(x)$ is a function from $mathbb{F}_{p^{n}}$ to $mathbb{F}_{p}$, $taugeq2$ is an integer, $F(x_1,cdots,x_n)$ is a reduced polynomial in $mathbb{F}_{p}[x_1,cdots,x_n]$ and $u_iin mathbb{F}^{*}_{p^n}$ for $1leq i leq tau$. As a consequence, we obtain a generic result on the Walsh transform of $f(x)$ and characterize the bentness of $f(x)$ when $g(x)$ is bent for $p=2$ and $p>2$ respectively. Our results generalize some earlier works. In addition, we study the construction of bent functions $f(x)$ when $g(x)$ is not bent for the first time and present a class of bent functions from non-bent Gold functions.
147 - Haisheng Li , Qiang Mu 2015
In this paper, we study Heisenberg vertex algebras over fields of prime characteristic. The new feature is that the Heisenberg vertex algebras are no longer simple unlike in the case of characteristic zero. We then study a family of simple quotient v ertex algebras and we show that for each such simple quotient vertex algebra, irreducible modules are unique up to isomorphism and every module is completely reducible. To achieve our goal, we also establish a complete reducibility theorem for a certain category of modules over Heisenberg algebras.
In this paper, we present three classes of complete permutation monomials over finite fields of odd characteristic. Meanwhile, the compositional inverses of these complete permutation polynomials are also proposed.
Let $G$ be a Lie group and $GtoAut(G)$ be the canonical group homomorphism induced by the adjoint action of a group on itself. We give an explicit description of a 1-1 correspondence between Morita equivalence classes of, on the one hand, principal 2 -group $[GtoAut(G)]$-bundles over Lie groupoids and, on the other hand, $G$-extensions of Lie groupoids (i.e. between principal $[GtoAut(G)]$-bundles over differentiable stacks and $G$-gerbes over differentiable stacks). This approach also allows us to identify $G$-bound gerbes and $[Z(G)to 1]$-group bundles over differentiable stacks, where $Z(G)$ is the center of $G$. We also introduce universal characteristic classes for 2-group bundles. For groupoid central $G$-extensions, we introduce Dixmier--Douady classes that can be computed from connection-type data generalizing the ones for bundle gerbes. We prove that these classes coincide with universal characteristic classes. As a corollary, we obtain further that Dixmier--Douady classes are integral.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا