ﻻ يوجد ملخص باللغة العربية
$ ewcommand{eps}{varepsilon} $In learning theory, the VC dimension of a concept class $C$ is the most common way to measure its richness. In the PAC model $$ ThetaBig(frac{d}{eps} + frac{log(1/delta)}{eps}Big) $$ examples are necessary and sufficient for a learner to output, with probability $1-delta$, a hypothesis $h$ that is $eps$-close to the target concept $c$. In the related agnostic model, where the samples need not come from a $cin C$, we know that $$ ThetaBig(frac{d}{eps^2} + frac{log(1/delta)}{eps^2}Big) $$ examples are necessary and sufficient to output an hypothesis $hin C$ whose error is at most $eps$ worse than the best concept in $C$. Here we analyze quantum sample complexity, where each example is a coherent quantum state. This model was introduced by Bshouty and Jackson, who showed that quantum examples are more powerful than classical examples in some fixed-distribution settings. However, Atici and Servedio, improved by Zhang, showed that in the PAC setting, quantum examples cannot be much more powerful: the required number of quantum examples is $$ OmegaBig(frac{d^{1-eta}}{eps} + d + frac{log(1/delta)}{eps}Big)mbox{ for all }eta> 0. $$ Our main result is that quantum and classical sample complexity are in fact equal up to constant factors in both the PAC and agnostic models. We give two approaches. The first is a fairly simple information-theoretic argument that yields the above two classical bounds and yields the same bounds for quantum sample complexity up to a $log(d/eps)$ factor. We then give a second approach that avoids the log-factor loss, based on analyzing the behavior of the Pretty Good Measurement on the quantum state identification problems that correspond to learning. This shows classical and quantum sample complexity are equal up to constant factors.
We generalize the PAC (probably approximately correct) learning model to the quantum world by generalizing the concepts from classical functions to quantum processes, defining the problem of emph{PAC learning quantum process}, and study its sample co
We study the complexity of quantum query algorithms that make p queries in parallel in each timestep. This model is in part motivated by the fact that decoherence times of qubits are typically small, so it makes sense to parallelize quantum algorithm
Given a quantum circuit, a quantum computer can sample the output distribution exponentially faster in the number of bits than classical computers. A similar exponential separation has yet to be established in generative models through quantum sample
We define a new query measure we call quantum distinguishing complexity, denoted QD(f) for a Boolean function f. Unlike a quantum query algorithm, which must output a state close to |0> on a 0-input and a state close to |1> on a 1-input, a quantum di
We demonstrate that the ability to estimate the relative sign of an arbitrary $n$-qubit quantum state (with real amplitudes), given only $k$ copies of that state, would yield a $kn$-query algorithm for unstructured search. Thus the quantum sample com