ترغب بنشر مسار تعليمي؟ اضغط هنا

Optimal Quantum Sample Complexity of Learning Algorithms

301   0   0.0 ( 0 )
 نشر من قبل Srinivasan Arunachalam
 تاريخ النشر 2016
والبحث باللغة English




اسأل ChatGPT حول البحث

$ ewcommand{eps}{varepsilon} $In learning theory, the VC dimension of a concept class $C$ is the most common way to measure its richness. In the PAC model $$ ThetaBig(frac{d}{eps} + frac{log(1/delta)}{eps}Big) $$ examples are necessary and sufficient for a learner to output, with probability $1-delta$, a hypothesis $h$ that is $eps$-close to the target concept $c$. In the related agnostic model, where the samples need not come from a $cin C$, we know that $$ ThetaBig(frac{d}{eps^2} + frac{log(1/delta)}{eps^2}Big) $$ examples are necessary and sufficient to output an hypothesis $hin C$ whose error is at most $eps$ worse than the best concept in $C$. Here we analyze quantum sample complexity, where each example is a coherent quantum state. This model was introduced by Bshouty and Jackson, who showed that quantum examples are more powerful than classical examples in some fixed-distribution settings. However, Atici and Servedio, improved by Zhang, showed that in the PAC setting, quantum examples cannot be much more powerful: the required number of quantum examples is $$ OmegaBig(frac{d^{1-eta}}{eps} + d + frac{log(1/delta)}{eps}Big)mbox{ for all }eta> 0. $$ Our main result is that quantum and classical sample complexity are in fact equal up to constant factors in both the PAC and agnostic models. We give two approaches. The first is a fairly simple information-theoretic argument that yields the above two classical bounds and yields the same bounds for quantum sample complexity up to a $log(d/eps)$ factor. We then give a second approach that avoids the log-factor loss, based on analyzing the behavior of the Pretty Good Measurement on the quantum state identification problems that correspond to learning. This shows classical and quantum sample complexity are equal up to constant factors.


قيم البحث

اقرأ أيضاً

We generalize the PAC (probably approximately correct) learning model to the quantum world by generalizing the concepts from classical functions to quantum processes, defining the problem of emph{PAC learning quantum process}, and study its sample co mplexity. In the problem of PAC learning quantum process, we want to learn an $epsilon$-approximate of an unknown quantum process $c^*$ from a known finite concept class $C$ with probability $1-delta$ using samples ${(x_1,c^*(x_1)),(x_2,c^*(x_2)),dots}$, where ${x_1,x_2, dots}$ are computational basis states sampled from an unknown distribution $D$ and ${c^*(x_1),c^*(x_2),dots}$ are the (possibly mixed) quantum states outputted by $c^*$. The special case of PAC-learning quantum process under constant input reduces to a natural problem which we named as approximate state discrimination, where we are given copies of an unknown quantum state $c^*$ from an known finite set $C$, and we want to learn with probability $1-delta$ an $epsilon$-approximate of $c^*$ with as few copies of $c^*$ as possible. We show that the problem of PAC learning quantum process can be solved with $$Oleft(frac{log|C| + log(1/ delta)} { epsilon^2}right)$$ samples when the outputs are pure states and $$Oleft(frac{log^3 |C|(log |C|+log(1/ delta))} { epsilon^2}right)$$ samples if the outputs can be mixed. Some implications of our results are that we can PAC-learn a polynomial sized quantum circuit in polynomial samples and approximate state discrimination can be solved in polynomial samples even when concept class size $|C|$ is exponential in the number of qubits, an exponentially improvement over a full state tomography.
We study the complexity of quantum query algorithms that make p queries in parallel in each timestep. This model is in part motivated by the fact that decoherence times of qubits are typically small, so it makes sense to parallelize quantum algorithm s as much as possible. We show tight bounds for a number of problems, specifically Theta((n/p)^{2/3}) p-parallel queries for element distinctness and Theta((n/p)^{k/(k+1)} for k-sum. Our upper bounds are obtained by parallelized quantum walk algorithms, and our lower bounds are based on a relatively small modification of the adversary lower bound method, combined with recent results of Belovs et al. on learning graphs. We also prove some general bounds, in particular that quantum and classical p-parallel complexity are polynomially related for all total functions f when p is small compared to fs block sensitivity.
Given a quantum circuit, a quantum computer can sample the output distribution exponentially faster in the number of bits than classical computers. A similar exponential separation has yet to be established in generative models through quantum sample learning: given samples from an n-qubit computation, can we learn the underlying quantum distribution using models with training parameters that scale polynomial in n under a fixed training time? We study four kinds of generative models: Deep Boltzmann machine (DBM), Generative Adversarial Networks (GANs), Long Short-Term Memory (LSTM) and Autoregressive GAN, on learning quantum data set generated by deep random circuits. We demonstrate the leading performance of LSTM in learning quantum samples, and thus the autoregressive structure present in the underlying quantum distribution from random quantum circuits. Both numerical experiments and a theoretical proof in the case of the DBM show exponentially growing complexity of learning-agent parameters required for achieving a fixed accuracy as n increases. Finally, we establish a connection between learnability and the complexity of generative models by benchmarking learnability against different sets of samples drawn from probability distributions of variable degrees of complexities in their quantum and classical representations.
We define a new query measure we call quantum distinguishing complexity, denoted QD(f) for a Boolean function f. Unlike a quantum query algorithm, which must output a state close to |0> on a 0-input and a state close to |1> on a 1-input, a quantum di stinguishing algorithm can output any state, as long as the output states for any 0-input and 1-input are distinguishable. Using this measure, we establish a new relationship in query complexity: For all total functions f, Q_0(f)=O~(Q(f)^5), where Q_0(f) and Q(f) denote the zero-error and bounded-error quantum query complexity of f respectively, improving on the previously known sixth power relationship. We also define a query measure based on quantum statistical zero-knowledge proofs, QSZK(f), which is at most Q(f). We show that QD(f) in fact lower bounds QSZK(f) and not just Q(f). QD(f) also upper bounds the (positive-weights) adversary bound, which yields the following relationships for all f: Q(f) >= QSZK(f) >= QS(f) = Omega(Adv(f)). This sheds some light on why the adversary bound proves suboptimal bounds for problems like Collision and Set Equality, which have low QSZK complexity. Lastly, we show implications for lifting theorems in communication complexity. We show that a general lifting theorem for either zero-error quantum query complexity or for QSZK would imply a general lifting theorem for bounded-error quantum query complexity.
We demonstrate that the ability to estimate the relative sign of an arbitrary $n$-qubit quantum state (with real amplitudes), given only $k$ copies of that state, would yield a $kn$-query algorithm for unstructured search. Thus the quantum sample com plexity of sign estimation must be exponential: $Omega(2^{n/2}/n)$. In particular, we show that an efficient procedure for solving the sign estimation problem would allow for a polynomial time solution to the NP-complete problem 3-SAT.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا