ترغب بنشر مسار تعليمي؟ اضغط هنا

An operational measure for squeezing

158   0   0.0 ( 0 )
 نشر من قبل Martin Idel
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We propose and analyse a mathematical measure for the amount of squeezing contained in a continuous variable quantum state. We show that the proposed measure operationally quantifies the minimal amount of squeezing needed to prepare a given quantum state and that it can be regarded as a squeezing analogue of the entanglement of formation. We prove that the measure is convex and superadditive and we provide analytic bounds as well as a numerical convex optimisation algorithm for its computation. By example, we then show that the amount of squeezing needed for the preparation of certain multi-mode quantum states can be significantly lower than naive approaches suggest.



قيم البحث

اقرأ أيضاً

235 - Luc Bouten 2017
In this paper we study quantum stochastic differential equations (QSDEs) that are driven by strongly squeezed vacuum noise. We show that for strong squeezing such a QSDE can be approximated (via a limit in the strong sense) by a QSDE that is driven b y a single commuting noise process. We find that the approximation has an additional Hamiltonian term.
We extend [Bru-de Siqueira Pedra-Hertling, J. Math. Phys. 56 (2015) 051901] in order to study the linear response of free fermions on the lattice within a (independently and identically distributed) random potential to a macroscopic electric field th at is time- and space-dependent. We obtain the notion of a macroscopic AC-conductivity measure which only results from the second principle of thermodynamics. The latter corresponds here to the positivity of the heat production for cyclic processes on equilibrium states. Its Fourier transform is a continuous bounded function which is naturally called (macroscopic) conductivity. We additionally derive Green-Kubo relations involving time-correlations of bosonic fields coming from current fluctuations in the system. This is reminiscent of non-commutative central limit theorems.
Quantum trajectories are Markov processes that describe the time-evolution of a quantum system undergoing continuous indirect measurement. Mathematically, they are defined as solutions of the so-called Stochastic Schrodinger Equations, which are nonl inear stochastic differential equations driven by Poisson and Wiener processes. This paper is devoted to the study of the invariant measures of quantum trajectories. Particularly, we prove that the invariant measure is unique under an ergodicity condition on the mean time evolution, and a purification condition on the generator of the evolution. We further show that quantum trajectories converge in law exponentially fast towards this invariant measure. We illustrate our results with examples where we can derive explicit expressions for the invariant measure.
An approximate exponential quantum projection filtering scheme is developed for a class of open quantum systems described by Hudson- Parthasarathy quantum stochastic differential equations, aiming to reduce the computational burden associated with on line calculation of the quantum filter. By using a differential geometric approach, the quantum trajectory is constrained in a finite-dimensional differentiable manifold consisting of an unnormalized exponential family of quantum density operators, and an exponential quantum projection filter is then formulated as a number of stochastic differential equations satisfied by the finite-dimensional coordinate system of this manifold. A convenient design of the differentiable manifold is also presented through reduction of the local approximation errors, which yields a simplification of the quantum projection filter equations. It is shown that the computational cost can be significantly reduced by using the quantum projection filter instead of the quantum filter. It is also shown that when the quantum projection filtering approach is applied to a class of open quantum systems that asymptotically converge to a pure state, the input-to-state stability of the corresponding exponential quantum projection filter can be established. Simulation results from an atomic ensemble system example are provided to illustrate the performance of the projection filtering scheme. It is expected that the proposed approach can be used in developing more efficient quantum control methods.
We put forward an operational degree of polarization that can be extended in a natural way to fields whose wave fronts are not necessarily planar. This measure appears as a distance from a state to the set of all its polarization-transformed counterp arts. By using the Hilbert-Schmidt metric, the resulting degree is a sum of two terms: one is the purity of the state and the other can be interpreted as a classical distinguishability, which can be experimentally determined in an interferometric setup. For transverse fields, this reduces to the standard approach, whereas it allows one to get a straight expression for nonparaxial fields.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا