ﻻ يوجد ملخص باللغة العربية
We propose and analyse a mathematical measure for the amount of squeezing contained in a continuous variable quantum state. We show that the proposed measure operationally quantifies the minimal amount of squeezing needed to prepare a given quantum state and that it can be regarded as a squeezing analogue of the entanglement of formation. We prove that the measure is convex and superadditive and we provide analytic bounds as well as a numerical convex optimisation algorithm for its computation. By example, we then show that the amount of squeezing needed for the preparation of certain multi-mode quantum states can be significantly lower than naive approaches suggest.
In this paper we study quantum stochastic differential equations (QSDEs) that are driven by strongly squeezed vacuum noise. We show that for strong squeezing such a QSDE can be approximated (via a limit in the strong sense) by a QSDE that is driven b
We extend [Bru-de Siqueira Pedra-Hertling, J. Math. Phys. 56 (2015) 051901] in order to study the linear response of free fermions on the lattice within a (independently and identically distributed) random potential to a macroscopic electric field th
Quantum trajectories are Markov processes that describe the time-evolution of a quantum system undergoing continuous indirect measurement. Mathematically, they are defined as solutions of the so-called Stochastic Schrodinger Equations, which are nonl
An approximate exponential quantum projection filtering scheme is developed for a class of open quantum systems described by Hudson- Parthasarathy quantum stochastic differential equations, aiming to reduce the computational burden associated with on
We put forward an operational degree of polarization that can be extended in a natural way to fields whose wave fronts are not necessarily planar. This measure appears as a distance from a state to the set of all its polarization-transformed counterp