ﻻ يوجد ملخص باللغة العربية
We demonstrate an efficient cross-phase modulation (XPM) based on a closed-loop double-{Lambda} system. The property of the double-{Lambda} medium can be controlled by changing the phases of the applied optical fields. This phase-dependent XPM scheme can achieve large phase modulations at low-light intensities without requiring cavities or tightly focusing of laser beams. With this scheme, we observe a {pi}-level phase shift with two pulses both consisting of 8 photons in cold rubidium atoms. Such novel scheme provides a simple route to generate strong interactions between photons and may have potential applications in all-optical quantum signal processing.
We exploit the nonlinearity arising from the spin-photon interaction in an InAs quantum dot to demonstrate phase shifts of scattered light pulses at the single-photon level. Photon phase shifts of close to 90 degrees are achieved using a charged quan
Quantum enhanced receivers are endowed with resources to achieve higher sensitivities than conventional technologies. For application in optical communications, they provide improved discriminatory capabilities for multiple non-orthogonal quantum sta
We succeeded in measuring phase shift spectra of a microsphere cavity coupled with a tapered fiber using a weak coherent probe light at the single photon level. We utilized a tapered fiber with almost no depolarization and constructed a very stable p
Few-photon optomechanical effects are not only important physical evidences for understanding the radiation-pressure interaction between photons and mechanical oscillation, but also have wide potential applications in modern quantum technology. Here
We report the experimental observations on the simultaneous EIT effects for probe and trigger fields (double EIT) as well as the large cross-phase modulation (XPM) between the two fields in a four-level tripod EIT system of the D1 line of 87Rb atoms.