ترغب بنشر مسار تعليمي؟ اضغط هنا

Zhus Algebra of a C1-cofinite Vertex Algebra

88   0   0.0 ( 0 )
 نشر من قبل Lu Ding
 تاريخ النشر 2015
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

For a C1-cofinite vertex algebra V, we give an efficient way to calculate Zhus algebra A(V) of V with respect to its C1-generators and relations. We use two examples to explain how this method works.



قيم البحث

اقرأ أيضاً

113 - Yuto Moriwaki 2018
Herein we study conformal vectors of a Z-graded vertex algebra of (strong) CFT type. We prove that the full vertex algebra automorphism group transitively acts on the set of the conformal vectors of strong CFT type if the vertex algebra is simple. Th e statement is equivalent to the uniqueness of self-dual vertex operator algebra structures of a simple vertex algebra. As an application, we show that the full vertex algebra automorphism group of a simple vertex operator algebra of strong CFT type uniquely decomposes into the product of certain two subgroups and the vertex operator algebra automorphism group. Furthermore, we prove that the full vertex algebra automorphism group of the moonshine module over the field of real numbers is the Monster.
In this paper, we study a certain deformation $D$ of the Virasoro algebra that was introduced and called $q$-Virasoro algebra by Nigro,in the context of vertex algebras. Among the main results, we prove that for any complex number $ell$, the category of restricted $D$-modules of level $ell$ is canonically isomorphic to the category of quasi modules for a certain vertex algebra of affine type. We also prove that the category of restricted $D$-modules of level $ell$ is canonically isomorphic to the category of $mathbb{Z}$-equivariant $phi$-coordinated quasi modules for the same vertex algebra. In the process, we introduce and employ a certain infinite dimensional Lie algebra which is defined in terms of generators and relations and then identified explicitly with a subalgebra of $mathfrak{gl}_{infty}$.
182 - W. Zhang , C. Dong 2007
In this paper the W-algebra W(2,2) and its representation theory are studied. It is proved that a simple vertex operator algebra generated by two weight 2 vectors is either a vertex operator algebra associated to a highest irreducible W(2,2)-module o r a tensor product of two irreducible Virasoro vertex operator algebras. Furthermore, any rational, C_2-cofinite simple vertex operator algebra whose weight 1 subspace is zero and weight 2 subspace is 2-dimensional, and with central charge c=1 is isomorphic to L(1/2,0)otimes L(1/2,0).
201 - Cuipo Jiang , Haisheng Li 2013
In this paper, we present a canonical association of quantum vertex algebras and their $phi$-coordinated modules to Lie algebra $gl_{infty}$ and its 1-dimensional central extension. To this end we construct and make use of another closely related infinite-dimensional Lie algebra.
It is shown that any simple, rational and C_2-cofinite vertex operator algebra whose weight 1 subspace is zero, the dimension of weight 2 subspace is greater than or equal to 2 and with central charge c=1, is isomorphic to L(1/2,0)otimes L(1/2,0).
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا