ﻻ يوجد ملخص باللغة العربية
This paper examines the relationship between certain non-commutative analogues of projective 3-space, $mathbb{P}^3$, and the quantized enveloping algebras $U_q(mathfrak{sl}_2)$. The relationship is mediated by certain non-commutative graded algebras $S$, one for each $q in mathbb{C}^times$, having a degree-two central element $c$ such that $S[c^{-1}]_0 cong U_q(mathfrak{sl}_2)$. The non-commutative analogues of $mathbb{P}^3$ are the spaces $operatorname{Proj}_{nc}(S)$. We show how the points, fat points, lines, and quadrics, in $operatorname{Proj}_{nc}(S)$, and their incidence relations, correspond to finite dimensional irreducible representations of $U_q(mathfrak{sl}_2)$, Verma modules, annihilators of Verma modules, and homomorphisms between them.
In this paper we explore the possibility of endowing simple infinite-dimensional ${mathfrak{sl}_2(mathbb{C})}$-modules by the structure of the graded module. The gradings on finite-dimensional simple module over simple Lie algebras has been studied in [arXiv:1308.6089] and [arXiv:1601.03008].
The $q$-analog of Kostants weight multiplicity formula is an alternating sum over a finite group, known as the Weyl group, whose terms involve the $q$-analog of Kostants partition function. This formula, when evaluated at $q=1$, gives the multiplicit
For every integer $g ,geq, 2$ we show the existence of a compact Riemann surface $Sigma$ of genus $g$ such that the rank two trivial holomorphic vector bundle ${mathcal O}^{oplus 2}_{Sigma}$ admits holomorphic connections with $text{SL}(2,{mathbb R})
Consider a $2$-nondegenerate constant Levi rank $1$ rigid $mathcal{C}^omega$ hypersurface $M^5 subset mathbb{C}^3$ in coordinates $(z, zeta, w = u + iv)$: [ u = Fbig(z,zeta,bar{z},bar{zeta}big). ] The Gaussier-Merker model $u=frac{zbar{z}+ frac{1}{2}
We show that an element w of a free group F on n generators defines a surjective word map of PSL(2,C)^n onto PSL(2,C) unless w belongs to the second derived subgroup of F. We also describe certain words maps that are surjective on SL(2,C) x SL(2,C). Here C is the field of complex numbers.