ﻻ يوجد ملخص باللغة العربية
We show that an element w of a free group F on n generators defines a surjective word map of PSL(2,C)^n onto PSL(2,C) unless w belongs to the second derived subgroup of F. We also describe certain words maps that are surjective on SL(2,C) x SL(2,C). Here C is the field of complex numbers.
Given a Heegaard splitting of a three-manifold Y, we consider the SL(2,C) character variety of the Heegaard surface, and two complex Lagrangians associated to the handlebodies. We focus on the smooth open subset corresponding to irreducible represent
This paper examines the relationship between certain non-commutative analogues of projective 3-space, $mathbb{P}^3$, and the quantized enveloping algebras $U_q(mathfrak{sl}_2)$. The relationship is mediated by certain non-commutative graded algebras
We study the asymptotic behavior of the Lyapunov exponent in a meromorphic family of random products of matrices in SL(2, C), as the parameter converges to a pole. We show that the blow-up of the Lyapunov exponent is governed by a quantity which can
We determine the multiplicity of the irreducible representation V(n) of the simple Lie algebra sl(2,C) as a direct summand of its fourth exterior power $Lambda^4 V(n)$. The multiplicity is 1 (resp. 2) if and only if n = 4, 6 (resp. n = 8, 10). For th
We show that PSL(2,Z[1/p]) admits a combing with bounded asynchronous width, and use this combing to show that PSL(2,Z[1/p]) has an exponential Dehn function. As a corollary, PSL(2,Z[1/p]) has solvable word problem and is not an automatic group.