ترغب بنشر مسار تعليمي؟ اضغط هنا

No Timing Variations Observed in Third Transit of Snow-Line Exoplanet Kepler-421b

52   0   0.0 ( 0 )
 نشر من قبل Paul Dalba
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We observed Kepler-421 during the anticipated third transit of the snow-line exoplanet Kepler-421b in order to constrain the existence and extent of transit timing variations (TTVs). Previously, the Kepler Spacecraft only observed two transits of Kepler-421b leaving the planets transit ephemeris unconstrained. Our visible light, time-series observations from the 4.3-meter Discovery Channel Telescope were designed to capture pre-transit baseline and the partial transit of Kepler-421b barring significant TTVs. We use the light curves to assess the probabilities of various transit models using both the posterior odds ratio and the Bayesian Information Criterion (BIC) and find that a transit model with no TTVs is favored to 3.6-sigma confidence. These observations suggest that Kepler-421b is either alone in its system or is only experiencing minor dynamic interactions with an unseen companion. With the Kepler-421b ephemeris constrained, we calculate future transit times and discuss the opportunity to characterize the atmosphere of this cold, long-period exoplanet via transmission spectroscopy. Our investigation emphasizes the difficulties associated with observing long-period exoplanet transits and the consequences that arise from failing to refine transit ephemerides.

قيم البحث

اقرأ أيضاً

Motivated by the unsettled conclusion on whether there are any transit timing variations (TTVs) for the exoplanet Qatar-1b, 10 new transit light curves are presented and the TTV analysis with a baseline of 1400 epochs are performed. Because the linea r model provides a good fitting with reduced chi-square = 2.59 and the false-alarm probabilities of possible TTV frequencies are as large as 35 %, our results are consistent with a null-TTV model. Nevertheless, a new ephemeris with the reference time T_0 = 2455647.63360pm 0.00008 (BJD) and the period P= 1.4200236pm 0.0000001 (day) is obtained. In addition, the updated orbital semi-major axis and planetary radius in unit of stellar radius are being provided, and the lower limit of modified stellar tidal quality factor is also determined.
Considering the importance of investigating the transit timing variations (TTVs) of transiting exoplanets, we present a follow-up study of HAT-P-12b. We include six new light curves observed between 2011 and 2015 from three different observatories, i n association with 25 light curves taken from the published literature. The sample of the data used, thus covers a time span of about 10.2 years with a large coverage of epochs (1160) for the transiting events of the exoplanet HAT-P-12b. The light curves are used to determine the orbital parameters and conduct an investigation of possible transit timing variations. The new linear ephemeris shows a large value of reduced chi-square = 7.93, and the sinusoidal fitting using the prominent frequency coming from a periodogram shows a reduced chi-square around 4. Based on these values and the corresponding O-C diagrams, we suspect the presence of a possible non-sinusoidal TTV in this planetary system. Finally, we find that a scenario with an additional non-transiting exoplanet could explain this TTV with an even smaller reduced chi-square value of around 2.
143 - R. Szabo , Gy. M. Szabo , G. Dalya 2012
Aims. Hot Jupiters are thought to belong to single-planet systems. Somewhat surprisingly, some hot Jupiters have been reported to exhibit transit timing variations (TTVs). The aim of this paper is to identify the origin of these observations, identif y possible periodic biases leading to false TTV detections, and refine the sample to a few candidates with likely dynamical TTVs. Methods. We present TTV frequencies and amplitudes of hot Jupiters in Kepler Q0--6 data with Fourier analysis and a frequency-dependent bootstrap calculation to assess the false alarm probability levels of the detections. Results. We identified 36 systems with TTV above four standard deviation confidence, about half of them exhibiting multiple TTV frequencies. Fifteen of these objects (HAT-P-7b, KOI-13, 127, 183, 188, 190, 196, 225, 254, 428, 607, 609, 684, 774, 1176) probably show TTVs due to a systematic observational effect: long cadence data sampling is regularly shifted transit-by-transit, interacting with the transit light curves, introducing a periodic bias, and leading to a stroboscopic period. For other systems, the activity and rotation of the host star can modulate light curves and explain the observed TTVs. By excluding the systems that were inadequately sampled, showed TTV periods related to the stellar rotation, or turned out to be false positives or suspects, we ended up with seven systems. Three of them (KOI-186, 897, 977) show the weakest stellar rotation features, and these are our best candidates for dynamically induced TTV variations. Conclusions. Those systems with periodic TTVs that we cannot explain with systematics from observation, stellar rotation, activity, or inadequate sampling may be multiple systems or even exomoon hosts.
109 - Marie Hrudkova 2008
Searching for transit timing variations in the known transiting exoplanet systems can reveal the presence of other bodies in the system. Here we report such searches for two transiting exoplanet systems, TrES-1 and WASP-2. Their new transits were obs erved with the 4.2m William Herschel Telescope located on La Palma, Spain. In a continuing programme, three consecutive transits were observed for TrES-1, and one for WASP-2 during September 2007. We used the Markov Chain Monte Carlo simulations to derive transit times and their uncertainties. The resulting transit times are consistent with the most recent ephemerides and no conclusive proof of additional bodies in either system was found.
We present a method to confirm the planetary nature of objects in systems with multiple transiting exoplanet candidates. This method involves a Fourier-Domain analysis of the deviations in the transit times from a constant period that result from dyn amical interactions within the system. The combination of observed anti-correlations in the transit times and mass constraints from dynamical stability allow us to claim the discovery of four planetary systems Kepler-25, Kepler-26, Kepler-27, and Kepler-28, containing eight planets and one additional planet candidate.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا