ترغب بنشر مسار تعليمي؟ اضغط هنا

Searching for transit timing variations in transiting exoplanet systems

147   0   0.0 ( 0 )
 نشر من قبل Marie Hrudkov\\'a
 تاريخ النشر 2008
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Marie Hrudkova




اسأل ChatGPT حول البحث

Searching for transit timing variations in the known transiting exoplanet systems can reveal the presence of other bodies in the system. Here we report such searches for two transiting exoplanet systems, TrES-1 and WASP-2. Their new transits were observed with the 4.2m William Herschel Telescope located on La Palma, Spain. In a continuing programme, three consecutive transits were observed for TrES-1, and one for WASP-2 during September 2007. We used the Markov Chain Monte Carlo simulations to derive transit times and their uncertainties. The resulting transit times are consistent with the most recent ephemerides and no conclusive proof of additional bodies in either system was found.



قيم البحث

اقرأ أيضاً

Motivated by the unsettled conclusion on whether there are any transit timing variations (TTVs) for the exoplanet Qatar-1b, 10 new transit light curves are presented and the TTV analysis with a baseline of 1400 epochs are performed. Because the linea r model provides a good fitting with reduced chi-square = 2.59 and the false-alarm probabilities of possible TTV frequencies are as large as 35 %, our results are consistent with a null-TTV model. Nevertheless, a new ephemeris with the reference time T_0 = 2455647.63360pm 0.00008 (BJD) and the period P= 1.4200236pm 0.0000001 (day) is obtained. In addition, the updated orbital semi-major axis and planetary radius in unit of stellar radius are being provided, and the lower limit of modified stellar tidal quality factor is also determined.
Considering the importance of investigating the transit timing variations (TTVs) of transiting exoplanets, we present a follow-up study of HAT-P-12b. We include six new light curves observed between 2011 and 2015 from three different observatories, i n association with 25 light curves taken from the published literature. The sample of the data used, thus covers a time span of about 10.2 years with a large coverage of epochs (1160) for the transiting events of the exoplanet HAT-P-12b. The light curves are used to determine the orbital parameters and conduct an investigation of possible transit timing variations. The new linear ephemeris shows a large value of reduced chi-square = 7.93, and the sinusoidal fitting using the prominent frequency coming from a periodogram shows a reduced chi-square around 4. Based on these values and the corresponding O-C diagrams, we suspect the presence of a possible non-sinusoidal TTV in this planetary system. Finally, we find that a scenario with an additional non-transiting exoplanet could explain this TTV with an even smaller reduced chi-square value of around 2.
We observed Kepler-421 during the anticipated third transit of the snow-line exoplanet Kepler-421b in order to constrain the existence and extent of transit timing variations (TTVs). Previously, the Kepler Spacecraft only observed two transits of Kep ler-421b leaving the planets transit ephemeris unconstrained. Our visible light, time-series observations from the 4.3-meter Discovery Channel Telescope were designed to capture pre-transit baseline and the partial transit of Kepler-421b barring significant TTVs. We use the light curves to assess the probabilities of various transit models using both the posterior odds ratio and the Bayesian Information Criterion (BIC) and find that a transit model with no TTVs is favored to 3.6-sigma confidence. These observations suggest that Kepler-421b is either alone in its system or is only experiencing minor dynamic interactions with an unseen companion. With the Kepler-421b ephemeris constrained, we calculate future transit times and discuss the opportunity to characterize the atmosphere of this cold, long-period exoplanet via transmission spectroscopy. Our investigation emphasizes the difficulties associated with observing long-period exoplanet transits and the consequences that arise from failing to refine transit ephemerides.
We present eight new light curves of the transiting extra-solar planet HAT-P-25b obtained from 2013 to 2016 with three telescopes at two observatories. We use the new light curves, along with recent literature material, to estimate the physical and o rbital parameters of the transiting planet. Specifically, we determine the mid-transit times (T$_{C}$) and update the linear ephemeris, T$_{C[0]}$=2456418.80996$pm$0.00025 [$mathrm{BJD}_mathrm{TDB}$] and P=3.65281572$pm$0.00000095 days. We carry out a search for transit timing variations (TTVs), and find no significant TTV signal at the $Delta T=$80 s-level, placing a limit on the possible strength of planet-planet interactions ($mathrm{TTV_{G}}$). In the course of our analysis, we calculate the upper mass-limits of the potential nearby perturbers. Near the 1:2, 2:1, and 3:1 resonances with HAT-P-25b, perturbers with masses greater than 0.5, 0.3, and 0.5 $mathrm{M_{oplus}}$ respectively, can be excluded. Furthermore, based on the analysis of TTVs caused by light travel time effect (LTTE) we also eliminate the possibility that a long-period perturber exists with $M_{rm p}> 3000 ,mathrm{M_{J}}$ within $a=11.2,{rm AU}$ of the parent star.
148 - R. Alonso , S. Aigrain , F. Pont 2008
With more than 80 transits observed in the CoRoT light curve with a cadence of 32 s, CoRoT-Exo-2b provides an excellent case to search for the secondary eclipse of the planet, with an expected signal of less than 10^-4 in relative flux. The activity of the star causes a modulation on the flux that makes the detection of this signal challenging. We describe the technique used to seek for the secondary eclipse, that leads to a tentative 2.5 sigma detection of a 5.5x10^-5 eclipse. If the effect of the spots are not taken into account, the times of transit centers will also be affected. They could lead to an erroneous detection of periodic transit timing variations of ~20 s and with a 7.45 d period. By measuring the transit central times at different depths of the transit (transit bisectors), we show that there are no such periodic variations in the CoRoT-Exo-2b O-C residuals larger than ~10 s.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا