ترغب بنشر مسار تعليمي؟ اضغط هنا

Unified First-Principles Study of the Anomalous Hall Effect Based on Exact Muffin-Tin Orbitals

112   0   0.0 ( 0 )
 نشر من قبل Lei Wang
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Based on the exact muffin-tin orbitals (EMTOs), we developed a first-principles method to calculate the current operators and investigated the anomalous Hall effect in bcc Fe as an example, with which we successfully separated the skew scattering contribution from the side jump and intrinsic contributions by fitting the scaling law with the introduction of sparse impurities. By investigating the temperature dependence of the anomalous Hall effect in bulk Fe, we predicted a fluctuated anomalous Hall angle as a function of temperature when considering only phonons, which, in the future, can be measured in experiments by suppressing magnon excitation, e.g., by applying a high external magnetic field.



قيم البحث

اقرأ أيضاً

53 - L. Vitos 2000
We present a self-consistent electronic structure calculation method based on the {it Exact Muffin-Tin Orbitals} (EMTO) Theory developed by O. K. Andersen, O. Jepsen and G. Krier (in {it Lectures on Methods of Electronic Structure Calculations}, Ed. by V. Kumar, O.K. Andersen, A. Mookerjee, Word Scientific, 1994 pp. 63-124) and O. K. Andersen, C. Arcangeli, R. W. Tank, T. Saha-Dasgupta, G. Krier, O. Jepsen, and I. Dasgupta, (in {it Mat. Res. Soc. Symp. Proc.} {bf 491}, 1998 pp. 3-34). The EMTO Theory can be considered as an {it improved screened} KKR (Korringa-Kohn-Rostoker) method which is able to treat large overlapping potential spheres. Within the present implementation of the EMTO Theory the one electron equations are solved exactly using the Greens function formalism, and the Poissons equation is solved within the {it Spherical Cell Approximation} (SCA). To demonstrate the accuracy of the SCA-EMTO method test calculations have been carried out.
151 - Kangtai Sun , Zhibin Gao , 2021
Phonon Hall effect (PHE) has attracted a lot of attention in recent years with many theoretical and experimental explorations published. While experiments work on complicated materials, theoretical studies are still hovering around the phenomenon-bas ed models. Moreover, previous microscopic theory was found unable to explain large thermal Hall conductivity obtained by experiments in strontium titanate (STO). Therefore, as a first attempt to bridge this gap, we implement first-principles calculations to explore the PHE in real materials. Our work provides a new benchmark of the PHE in sodium chloride (NaCl) under a large external magnetic field. Moreover, we demonstrate our results in barium titanate (BTO), and discuss the results in STO in detail about their deviation from experiments. As a possible future direction, we further propose that the inner electronic Berry curvature plays an important role in the PHE in STO.
By the example of sp^3-bonded semiconductors, we illustrate what 3rd-generation muffin-tin orbitals (MTOs) are. We demonstrate that they can be downfolded to smaller and smaller basis sets: sp^3d^10,sp^3, and bond orbitals. For isolated bands, it is possible to generate Wannier functions a priori. Also for bands, which overlap other bands, Wannier-like MTOs can be generated a priori. Hence, MTOs have a unique capability for providing chemical understanding.
We have derived orbital basis sets from scattering theory. They are expressed as polynomial approximations to the energy dependence of a set of partial waves, in quantized form. The corresponding matrices, as well as the Hamiltonian and overlap matri ces, are specified by the values on the energy mesh of the screened resolvent and its first energy derivative. These orbitals are a generalization of the 3rd-generation linear MTOs and should be useful for electronic-structure calculations in general.
Motivated by the recently observed unconventional Hall effect in ultra-thin films of ferromagnetic SrRuO$_3$ (SRO) we investigate the effect of strain-induced oxygen octahedral distortion in the electronic structure and anomalous Hall response of the SRO ultra-thin films by virtue of density functional theory calculations. Our findings reveal that the ferromagnetic SRO films grown on SrTiO$_3$ (in-plane strain of $-$0.47$%$) have an orthorhombic (both tilting and rotation) distorted structure and with an increasing amount of substrate-induced compressive strain the octahedral tilting angle is found to be suppressed gradually, with SRO films grown on NdGaO$_3$ (in-plane strain of $-$1.7$%$) stabilized in the tetragonal distorted structure (with zero tilting). Our Berry curvature calculations predict a positive value of the anomalous Hall conductivity of $+$76,S/cm at $-$1.7$%$ strain, whereas it is found to be negative ($-$156,S/cm) at $-$0.47$%$ strain. We attribute the found behavior of the anomalous Hall effect to the nodal point dynamics in the electronic structure arising in response to tailoring the oxygen octahedral distortion driven by the substrate-induced strain. We also calculate strain-mediated anomalous Hall conductivity as a function of reduced magnetization obtained by scaling down the magnitude of the exchange field inside Ru atoms finding good qualitative agreement with experimental observations, which indicates a strong impact of longitudinal thermal fluctuations of Ru spin moments on the anomalous Hall effect in this system.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا