ﻻ يوجد ملخص باللغة العربية
We use a large data-set of realistic synthetic observations (PaperI) to assess how observational techniques affect the measurement of physical properties of star-forming regions. In this paper (PaperII), we explore the reliability of the measured total gas mass, dust surface density and dust temperature maps derived from modified blackbody fitting of synthetic Herschel observations. We found from our pixel-by-pixel analysis of the measured dust surface density and dust temperature a worrisome error spread especially close to star-formation sites and low-density regions, where for those contaminated pixels the surface densities can be under/overestimated by up to three orders of magnitude. In light of this, we recommend to treat the pixel-based results from this technique with caution in regions with active star formation. In regions of high background typical in the inner Galactic plane, we are not able to recover reliable surface density maps of individual synthetic regions, since low-mass regions are lost in the FIR background. When measuring the total gas mass of regions in moderate background, we find that modified blackbody fitting works well (absolute error:+9%;-13%) up to 10kpc distance (errors increase with distance). Commonly, the initial images are convolved to the largest common beam-size, which smears contaminated pixels over large areas. The resulting information loss makes this commonly-used technique less verifiable as now chi^2-values cannot be used as a quality indicator of a fitted pixel. Our control measurements of the total gas mass (without the step of convolution to the largest common beam size) produce similar results (absolute error:+20%;-7%) while having much lower median errors especially for the high-mass stellar feedback phase. In upcoming papers (III&IV) we test the reliability of measured star-formation rate with direct and indirect techniques.
Through synthetic observations of a hydrodynamical simulation of an evolving star-forming region, we assess how the choice of observational techniques affects the measurements of properties which trace star formation. Testing and calibrating observat
Through an extensive set of realistic synthetic observations (produced in Paper I), we assess in this part of the paper series (Paper III) how the choice of observational techniques affects the measurement of star-formation rates (SFRs) in star-formi
We present {lambda}1.3 mm CARMA observations of dust polarization toward 30 star-forming cores and 8 star-forming regions from the TADPOL survey. We show maps of all sources, and compare the ~2.5 resolution TADPOL maps with ~20 resolution polarizatio
The infrared data from the Spitzer Space Telescope has provided an invaluable tool for identifying physical processes in star formation. In this study we calculate the IRAC color space of UV fluorescent molecular hydrogen (H$_2$) and Polycyclic Aroma
Most protostars have luminosities that are fainter than expected from steady accretion over the protostellar lifetime. The solution to this problem may lie in episodic mass accretion -- prolonged periods of very low accretion punctuated by short burs