ترغب بنشر مسار تعليمي؟ اضغط هنا

How do stars gain their mass? A JCMT/SCUBA-2 Transient Survey of Protostars in Nearby Star Forming Regions

89   0   0.0 ( 0 )
 نشر من قبل Gregory J. Herczeg
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Most protostars have luminosities that are fainter than expected from steady accretion over the protostellar lifetime. The solution to this problem may lie in episodic mass accretion -- prolonged periods of very low accretion punctuated by short bursts of rapid accretion. However, the timescale and amplitude for variability at the protostellar phase is almost entirely unconstrained. In A JCMT/SCUBA-2 Transient Survey of Protostars in Nearby Star Forming Regions, we are monitoring monthly with SCUBA-2 the sub-mm emission in eight fields within nearby (<500 pc) star forming regions to measure the accretion variability of protostars. The total survey area of ~1.6 sq.deg. includes ~105 peaks with peaks brighter than 0.5 Jy/beam (43 associated with embedded protostars or disks) and 237 peaks of 0.125-0.5 Jy/beam (50 with embedded protostars or disks). Each field has enough bright peaks for flux calibration relative to other peaks in the same field, which improves upon the nominal flux calibration uncertainties of sub-mm observations to reach a precision of ~2-3% rms, and also provides quantified confidence in any measured variability. The timescales and amplitudes of any sub-mm variation will then be converted into variations in accretion rate and subsequently used to infer the physical causes of the variability. This survey is the first dedicated survey for sub-mm variability and complements other transient surveys at optical and near-IR wavelengths, which are not sensitive to accretion variability of deeply embedded protostars.



قيم البحث

اقرأ أيضاً

We present the highest resolution single-dish submillimetre observations of the detached shell source U Antliae to date. The observations were obtained at $450~micron$ and $850~micron$ with SCUBA-2 instrument on the James Clerk Maxwell Telescope as p art of the Nearby Evolved Stars Survey. The emission at $850~micron$ peaks at $40arcsec$ with hints of a second peak seen at $sim 20arcsec$. The emission can be traced out to a radius of $56arcsec$ at a $3sigma$ level. The outer peak observed at $850~micron$ aligns well with the peak observed at Herschel/PACS wavelengths. With the help of spectral energy distribution fitting and radiative transfer calculations of multiple-shell models for the circumstellar envelope, we explore the various shell structures and the variation of grain sizes along the in the circumstellar envelope. We determine a total shell dust mass of $(2.0 pm 0.3) times 10^{-5}$ M$_{odot}$ and established that the thermal pulse which gave rise to the detached shell occurred 3500 $pm$ 500 years ago.
We present the four-year survey results of monthly submillimeter monitoring of eight nearby ($< 500 $pc) star-forming regions by the JCMT Transient Survey. We apply the Lomb-Scargle Periodogram technique to search for and characterize variability on 295 submillimeter peaks brighter than 0.14 Jy beam$^{-1}$, including 22 disk sources (Class II), 83 protostars (Class 0/I), and 190 starless sources. We uncover 18 secular variables, all of them protostars. No single-epoch burst or drop events and no inherently stochastic sources are observed. We classify the secular variables by their timescales into three groups: Periodic, Curved, and Linear. For the Curved and Periodic cases, the detectable fractional amplitude, with respect to mean peak brightness, is $sim4$ % for sources brighter than $sim$ 0.5 Jy beam$^{-1}$. Limiting our sample to only these bright sources, the observed variable fraction is 37 % (16 out of 43). Considering source evolution, we find a similar fraction of bright variables for both Class 0 and Class I. Using an empirically motivated conversion from submillimeter variability to variation in mass accretion rate, six sources (7 % of our full sample) are predicted to have years-long accretion events during which the excess mass accreted reaches more than 40 % above the total quiescently accreted mass: two previously known eruptive Class I sources, V1647 Ori and EC 53 (V371 Ser), and four Class 0 sources, HOPS 356, HOPS 373, HOPS 383, and West 40. Considering the full protostellar ensemble, the importance of episodic accretion on few years timescale is negligible, only a few percent of the assembled mass. However, given that this accretion is dominated by events of order the observing time-window, it remains uncertain as to whether the importance of episodic events will continue to rise with decades-long monitoring.
We present the JCMT Gould Belt Surveys first look results of the southern extent of the Orion A Molecular Cloud ($delta leq -5mathrm{:}31mathrm{:}27.5$). Employing a two-step structure identification process, we construct individual catalogues for la rge-scale regions of significant emission labelled as islands and smaller-scale subregions called fragments using the 850 $mu$m continuum maps obtained using SCUBA-2. We calculate object masses, sizes, column densities, and concentrations. We discuss fragmentation in terms of a Jeans instability analysis and highlight interesting structures as candidates for follow-up studies. Furthermore, we associate the detected emission with young stellar objects (YSOs) identified by Spitzer and Herschel. We find that although the population of active star-forming regions contains a wide variety of sizes and morphologies, there is a strong positive correlation between the concentration of an emission region and its calculated Jeans instability. There are, however, a number of highly unstable subregions in dense areas of the map that show no evidence of star formation. We find that only $sim$72% of the YSOs defined as Class 0+I and flat-spectrum protostars coincide with dense 850 $mu$m emission structures (column densities $>3.7times10^{21}mathrm{:cm}^{-2}$). The remaining 28% of these objects, which are expected to be embedded in dust and gas, may be misclassified. Finally, we suggest that there is an evolution in the velocity dispersion of young stellar objects such that sources which are more evolved are associated with higher velocities.
140 - Jason E. Ybarra 2014
The infrared data from the Spitzer Space Telescope has provided an invaluable tool for identifying physical processes in star formation. In this study we calculate the IRAC color space of UV fluorescent molecular hydrogen (H$_2$) and Polycyclic Aroma tic Hydrocarbon (PAH) emission in photodissociation regions (PDRs) using the Cloudy code with PAH opacities from Draine & Li 2007. We create a set of color diagnostics that can be applied to study the structure of PDRs and to distinguish between FUV excited and shock excited H$_2$ emission. To test this method we apply these diagnostics to Spitzer IRAC data of NGC 2316. Our analysis of the structure of the PDR is consistent with previous studies of the region. In addition to UV excited emission, we identify shocked gas that may be part of an outflow originating from the cluster.
Through an extensive set of realistic synthetic observations (produced in Paper I), we assess in this part of the paper series (Paper III) how the choice of observational techniques affects the measurement of star-formation rates (SFRs) in star-formi ng regions. We test the accuracy of commonly used techniques and construct new methods to extract the SFR, so that these findings can be applied to measure the SFR in real regions throughout the Milky Way. We investigate diffuse infrared SFR tracers such as those using 24 {mu}m, 70 {mu}m and total infrared emission, which have been previously calibrated for global galaxy scales. We set up a toy model of a galaxy and show that the infrared emission is consistent with the intrinsic SFR using extra-galactic calibrated laws (although the consistency does not prove their reliability). For local scales, we show that these techniques produce completely unreliable results for single star-forming regions, which are governed by different characteristic timescales. We show how calibration of these techniques can be improved for single star-forming regions by adjusting the characteristic timescale and the scaling factor and give suggestions of new calibrations of the diffuse star-formation tracers. We show that star-forming regions that are dominated by high-mass stellar feedback experience a rapid drop in infrared emission once high-mass stellar feedback is turned on, which implies different characteristic timescales. Moreover, we explore the measured SFRs calculated directly from the observed young stellar population. We find that the measured point sources follow the evolutionary pace of star formation more directly than diffuse star-formation tracers.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا