ترغب بنشر مسار تعليمي؟ اضغط هنا

Magnetic Fluctuations, Precursor Phenomena and Phase Transition in MnSi under Magnetic Field

45   0   0.0 ( 0 )
 نشر من قبل Lars Bannenberg
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The reference chiral helimagnet MnSi is the first system where skyrmion lattice correlations have been reported. At zero magnetic field the transition at $T_C$ to the helimagnetic state is of first order. Above $T_C$, in a region dominated by precursor phenomena, neutron scattering shows the build up of strong chiral fluctuating correlations over the surface of a sphere with radius $2pi/ell$, where $ell$ is the pitch of the helix. It has been suggested that these fluctuating correlations drive the helical transition to first order following a scenario proposed by Brazovskii for liquid crystals. We present a comprehensive neutron scattering study under magnetic fields, which provides evidence that this is not the case. The sharp first order transition persists for magnetic fields up to 0.4 T whereas the fluctuating correlations weaken and start to concentrate along the field direction already above 0.2 T. Our results thus disconnect the first order nature of the transition from the precursor fluctuating correlations. They also show no indication for a tricritical point, where the first order transition crosses over to second order with increasing magnetic field. In this light, the nature of the first order helical transition and the precursor phenomena above $T_C$, both of general relevance to chiral magnetism, remain an open question.

قيم البحث

اقرأ أيضاً

We present a comprehensive analysis of high resolution neutron scattering data involving Neutron Spin Echo spectroscopy and Spherical Polarimetry which confirm the first order nature of the helical transition and reveal the existence of a new spin li quid skyrmion phase. Similar to the blue phases of liquid crystals this phase appears in a very narrow temperature range between the low temperature helical and the high temperature paramagnetic phases.
We present magnetic characterization of a binary rare-earth intermetallic compound Er5Si3, crystallizing in Mn5Si3-type hexagonal structure, through magnetization, heat-capacity, electrical resistivity, and magnetoresistance measurements. Our investi gations confirm that the compound exhibits two magnetic transitions with decreasing temperature, first one at 35 K and the second one at 15 K. The present results reveal that the second magnetic transition is a disorder-broadened first-order transition, as shown by thermal hysteresis in the measured data. Another important finding is that, below 15 K, there is a magnetic-field-induced transition with a hysteretic effect with the electrical resistance getting unusually enhanced at this transition and the magnetorsistance (MR) is found to exhibit intriguing magnetic-field dependence indicating novel magnetic phase-co-existence phenomenon. It thus appears that this compound is characterized by interesting magnetic anomalies in the temperature-magnetic-field phase diagram.
The compounds, PrCo9Si4 and NdCo9Si4, have been recently reported to exhibit first-order ferromagnetic transitions near 24 K. We have subjected this compound for further characterization by magnetization, heat-capacity and electrical resistivity meas urements at low temperatures in the presence of magnetic fields, particularly to probe magnetocaloric effect and magnetoresistance. The compounds are found to exhibit rather modest magnetocaloric effect at low temperatures peaking at Curie temperature, tracking the behavior of magnetoresistance. The magnetic transition does not appear to be first order in its character.
The acoustic properties of liquid oxygen have been studied up to 90 T by means of the ultrasound pulse-echo technique. A monotonic decrease of the sound velocity and an asymptotic increase of the acoustic attenuation are observed by applying magnetic fields. An unusually large acoustic attenuation, that becomes 20 times as large as the zero-field value, cannot be explained by the classical theory. These results indicate strong fluctuations of antiferromagnetically coupled local structures. We point out that the observed fluctuations are a precursor of a liquid-liquid transition, from a low-susceptibility to a high-susceptibility liquid, which is characterized by a local-structure rearrangement.
52 - Sahbi El-Hog 2016
We study the phase transition in a helimagnetic film with Heisenberg spins under an applied magnetic field in the c direction perpendicular to the film. The helical structure is due to the an-tiferromagnetic interaction between next-nearest neighbors in the c direction. Helimagnetic films in zero field are known to have a strong modification of the in-plane helical angle near the film surfaces. We show that spins react to a moderate applied magnetic field by creating a particular spin configuration along the c axis. With increasing temperature (T), using Monte Carlo simulations we show that the system undergoes a phase transition triggered by the destruction of the ordering of a number of layers. This partial phase transition is shown to be intimately related to the ground-state spin structure. We show why some layers undergo a phase transition while others do not. The Greens function method for non collinear magnets is also carried out to investigate effects of quantum fluctuations. Non-uniform zero-point spin contractions and a crossover of layer magnetizations at low T are shown and discussed.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا