ﻻ يوجد ملخص باللغة العربية
Resource consumption of the conventional surface code is expensive, in part due to the need to separate the defects that create the logical qubit far apart on the physical qubit lattice. We propose that instantiating the deformation-based surface code using superstabilizers makes it possible to detect short error chains connecting the superstabilizers, allowing us to place logical qubits close together. Additionally, we demonstrate the process of conversion from the defect-based surface code, which works as arbitrary state injection, and a lattice surgery-like CNOT gate implementation that requires fewer physical qubits than the braiding CNOT gate. Finally we propose a placement design for the deformation-based surface code and analyze its resource consumption; large scale quantum computation requires $frac{25}{4}d^2 +5d + 1$ physical qubits per logical qubit where $d$ is the code distance, whereas the planar code requires $16d^2 -16d + 4$ physical qubits per logical qubit, for a reduction of about 55%.
In recent years, surface codes have become a leading method for quantum error correction in theoretical large scale computational and communications architecture designs. Their comparatively high fault-tolerant thresholds and their natural 2-dimensio
State distillation is the process of taking a number of imperfect copies of a particular quantum state and producing fewer better copies. Until recently, the lowest overhead method of distilling states |A>=(|0>+e^{ipi/4}|1>)/sqrt{2} produced a single
The yield of physical qubits fabricated in the laboratory is much lower than that of classical transistors in production semiconductor fabrication. Actual implementations of quantum computers will be susceptible to loss in the form of physically faul
The surface code is a prominent topological error-correcting code exhibiting high fault-tolerance accuracy thresholds. Conventional schemes for error correction with the surface code place qubits on a planar grid and assume native CNOT gates between
We consider a notion of relative homology (and cohomology) for surfaces with two types of boundaries. Using this tool, we study a generalization of Kitaevs code based on surfaces with mixed boundaries. This construction includes both Bravyi and Kitae