ﻻ يوجد ملخص باللغة العربية
We develop a microscopic picture of shear thickening in dense suspensions which emphasizes the role of frictional forces, coupling rotational and translational degrees of freedom. Simulations with contact forces and viscous drag only, reveal pronounced shear thickening with a simultaneous increase in contact number and energy dissipation by frictional forces. At high densities, when the translational motion is severely constrained, we observe liquid-like gear-states with pronounced relative rotations of the particles coexisting with solid-like regions which rotate as a whole. The latter are stabilised by frustrated loops which become more numerous and persistent with increasing pressure, giving rise to an increasing lengthscale of this mosaique-like structure and a corresponding increase in viscosity.
Shear thickening of particle suspensions is characterized by a transition between lubricated and frictional contacts between the particles. Using 3D numerical simulations, we study how the inter-particle friction coefficient influences the effective
Particle-based simulations of discontinuous shear thickening (DST) and shear jamming (SJ) suspensions are used to study the role of stress-activated constraints, with an emphasis on resistance to gear-like rolling. Rolling friction decreases the volu
We propose a simple model, supported by contact-dynamics simulations as well as rheology and friction measurements, that links the transition from continuous to discontinuous shear-thickening in dense granular pastes to distinct lubrication regimes i
We consider the shear rheology of concentrated suspensions of non-Brownian frictional particles. The key result of our study is the emergence of a pronounced shear-thickening regime, where frictionless particles would normally undergo shear-thinning.
We show that a suspension of non-Brownian calcite particles in glycerol-water mixtures can be tuned continuously from being a yield-stress suspension to a shear-thickening suspension--without a measurable yield stress--by the addition of various surf