ترغب بنشر مسار تعليمي؟ اضغط هنا

Shear Thickening of Dense Suspensions: The Role of Friction

137   0   0.0 ( 0 )
 نشر من قبل Vishnu Sivadasan Mr.
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Shear thickening of particle suspensions is characterized by a transition between lubricated and frictional contacts between the particles. Using 3D numerical simulations, we study how the inter-particle friction coefficient influences the effective macroscopic friction coefficient and hence the microstructure and rheology of dense shear thickening suspensions. We propose expressions for effective friction coefficient in terms of distance to jamming for varying shear stresses and particle friction coefficient values. We find effective friction coefficient to be rather insensitive to interparticle friction, which is perhaps surprising but agrees with recent theory and experiments.

قيم البحث

اقرأ أيضاً

Particle-based simulations of discontinuous shear thickening (DST) and shear jamming (SJ) suspensions are used to study the role of stress-activated constraints, with an emphasis on resistance to gear-like rolling. Rolling friction decreases the volu me fraction required for DST and SJ, in quantitative agreement with real-life suspensions with adhesive surface chemistries and rough particle shapes. It sets a distinct structure of the frictional force network compared to only sliding friction, and from a dynamical perspective leads to an increase in the velocity correlation length, in part responsible for the increased viscosity. The physics of rolling friction is thus a key element in achieving a comprehensive understanding of strongly shear-thickening materials.
274 - Abdoulaye Fall 2012
We study the rheology of cornstarch suspensions, a non-Brownian particle system that exhibits discontinuous shear thickening. Using magnetic resonance imaging (MRI), the local properties of the flow are obtained by the determination of local velocity profiles and concentrations in a Couette cell. For low rotational rates, we observe shear localization characteristic of yield stress fluids. When the overall shear rate is increased, the width of the sheared region increases. The discontinuous shear thickening is found to set in at the end of this shear localization regime when all of the fluid is sheared: the existence of a nonflowing region, thus, seems to prevent or delay shear thickening. Macroscopic observations using different measurement geometries show that the smaller the gap of the shear cell, the lower the shear rate at which shear thickening sets in. We, thus, propose that the discontinuous shear thickening of cornstarch suspensions is a consequence of dilatancy: the system under flow attempts to dilate but instead undergoes a jamming transition, because it is confined. This proposition is confirmed by an independent measurement of the dilation of the suspension as a function of the shear rate. It is also explains the MRI observations: when flow is localized, the nonflowing region plays the role of a dilatancy reservoir which allows the material to be sheared without jamming.
95 - Qin Xu , Abhinendra Singh , 2019
We experimentally investigate the rheology and stress fluctuations of granules densely suspended in silicone oil. We find that both thickening strength and stress fluctuations significantly weaken with oil viscosity $eta_0$. Comparison of our rheolog ical results to the Wyart-Cates model for describing different dynamic jamming states suggests a transition from frictional contacts to lubrication interactions as $eta_0$ increases. To clarify the contribution from viscous interactions to the rheology, we systematically measure stress fluctuations in various flow states. Reduction of stress fluctuations with $eta_0$ indicates that a strong lubrication layer greatly inhibits force correlations among particles. Measuring stress fluctuations in the strong shear thickening regime, we observe a crossover from asymmetric Gamma to symmetric Gaussian distributions and associated with it a decrease of lateral (radial) correlation length $xi$ with increasing shear rate.
Dense suspensions are non-Newtonian fluids which exhibit strong shear thickening and normal stress differences. Using numerical simulation of extensional and shear flows, we investigate how rheological properties are determined by the microstructure which is built under flows and by the interactions between particles. By imposing extensional and shear flows, we can assess the degree of flow-type dependence in regimes below and above thickening. Even when the flow-type dependence is hindered, nondissipative responses, such as normal stress differences, are present and characterise the non-Newtonian behaviour of dense suspensions.
A consensus is emerging that discontinuous shear thickening (DST) in dense suspensions marks a transition from a flow state where particles remain well separated by lubrication layers, to one dominated by frictional contacts. We show here that reason able assumptions about contact proliferation predict two distinct types of DST in the absence of inertia. The first occurs at densities above the jamming point of frictional particles; here the thickened state is completely jammed and (unless particles deform) cannot flow without inhomogeneity or fracture. The second regime shows strain- rate hysteresis and arises at somewhat lower densities where the thickened phase flows smoothly. DST is predicted to arise when finite-range repulsions defer contact formation until a characteristic stress level is exceeded.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا