ﻻ يوجد ملخص باللغة العربية
Red giant stars are perhaps the most important type of stars for Galactic and extra-galactic archaeology: they are luminous, occur in all stellar populations, and their surface temperatures allow precise abundance determinations for many different chemical elements. Yet, the full star formation and enrichment history of a galaxy can be traced directly only if two key observables can be determined for large stellar samples - age and chemical composition. While spectroscopy is a powerful method to analyse the detailed abundances of stars, stellar ages are the missing link in the chain, since they are not a direct observable. However, spectroscopy should be able to estimate stellar masses, which for red giants directly infer ages provided their chemical composition is known. Here we establish a new empirical relation between the shape of the hydrogen line in the observed spectra of red giants and stellar mass determined from asteroseismology. The relation allows to determine stellar masses and ages with the accuracy of 10-15%. The method can be used with confidence for stars in the following range of stellar parameters: 4000 < Teff < 5000 K, 0.5 < log g < 3.5, -2.0 < [Fe/H] < 0.3, and luminosities log L/LSun < 2.5. Our analysis provides observational evidence that the Halpha spectral characteristics of red giant stars are tightly correlated with their mass and therefore their age. We also show that the method samples well all stellar populations with ages above 1 Gyr. Targeting bright giants, the method allows to obtain simultaneous age and chemical abundance information far deeper than would be possible with asteroseismology, extending the possible survey volume to remote regions of the Milky Way and even to neighbouring galaxies like Andromeda or the Magellanic Clouds already with present instrumentation, like VLT and Keck facilities.
High spectral resolution and high signal-to-noise ratio optical spectra of red giants in the globular cluster Omega Centauri are analysed for stellar parameters and chemical abundances of 15 elements including helium by either line equivalent widths
It has recently been suggested that all giant stars with mass below 2 $M_{odot}$ suffer an episode of surface lithium enrichment between the tip of the red giant branch (RGB) and the red clump (RC). We test if the above result can be confirmed in a s
The extensive stellar spectroscopic datasets that are available for studies in Galactic Archeaology thanks to, for example, the Gaia-ESO Survey, now benefit from having a significant number of targets that overlap with asteroseismology projects such
This paper describes the analysis of UVES and GIRAFFE spectra acquired by the Gaia-ESO Public Spectroscopic Survey in the fields of young clusters whose population includes pre-main sequence (PMS) stars. Both methods that have been extensively used i
The Gaia-ESO survey (GES) is now in its fifth and last year of observations, and has already produced tens of thousands of high-quality spectra of stars in all Milky Way components. This paper presents the strategy behind the selection of astrophysic