ﻻ يوجد ملخص باللغة العربية
The basic processes of the formation of the first stars in the primordial Universe are outlined and the implications for cosmological structure formation discussed. By employing theoretical and numerical models of cosmic structure evolution embedded within N-body hydrodynamical chemistry simulations, predictions for the production of the first heavy elements in the Universe are given. These results are then compared against measured data of UV luminosities and metal abundances in different kinds of observations in order to draw conclusions on the chemical and thermal state of the cosmic medium at different cosmological epochs.
Using the Renaissance suite of simulations we examine the emergence of pristine atomic cooling haloes that are both metal-free and star-free in the early Universe. The absence of metals prevents catastrophic cooling, suppresses fragmentation, and may
One of the most challenging and exciting subjects in modern astrophysics is that of galaxy formation at the epoch of reionisation. The SKA, with its revolutionary capabilities in terms of frequency range, resolution and sensitivity, will allow to exp
Recent studies suggest the existence of very massive stars (VMS) up to 300 solar masses in the local Universe. As this finding may represent a paradigm shift for the canonical stellar upper-mass limit of 150 solar masses, it is timely to evaluate the
The adiabatic index of H$_2,$ ($gamma_{mathrm{H_2}}$) is non-constant at temperatures between $100-10^4,mathrm{K}$ due to the large energy spacing between its rotational and vibrational modes. For the formation of the first stars at redshifts 20 and
Recent studies have claimed the existence of very massive stars (VMS) up to 300 solar masses in the local Universe. As this finding may represent a paradigm shift for the canonical stellar upper-mass limit of 150 Msun, it is timely to discuss the sta