ترغب بنشر مسار تعليمي؟ اضغط هنا

The role of the H$_2$ adiabatic index in the formation of the first stars

64   0   0.0 ( 0 )
 نشر من قبل Piyush Sharda Mr.
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The adiabatic index of H$_2,$ ($gamma_{mathrm{H_2}}$) is non-constant at temperatures between $100-10^4,mathrm{K}$ due to the large energy spacing between its rotational and vibrational modes. For the formation of the first stars at redshifts 20 and above, this variation can be significant because primordial molecular clouds are in this temperature range due to the absence of efficient cooling by dust and metals. We study the possible importance of variations in $gamma_{mathrm{H_2}}$ for the primordial initial mass function by carrying out 80 3D gravito-hydrodynamic simulations of collapsing clouds with different random turbulent velocity fields, half using fixed $gamma_{rm H_2} = 7/5$ in the limit of classical diatomic gas (used in earlier works) and half using an accurate quantum mechanical treatment of $gamma_{mathrm{H_2}}$. We use the adaptive mesh refinement code FLASH with the primordial chemistry network from KROME for this study. The simulation suite produces almost 400 stars, with masses from $0.02 - 50$ M$_odot$ (mean mass $sim 10.5,mathrm{M_{odot}}$ and mean multiplicity fraction $sim 0.4$). While the results of individual simulations do differ when we change our treatment of $gamma_{mathrm{H_2}}$, we find no statistically significant differences in the overall mass or multiplicity distributions of the stars formed in the two sets of runs. We conclude that, at least prior to the onset of radiation feedback, approximating H$_2$ as a classical diatomic gas with $gamma_{rm H_2} = 7/5$ does not induce significant errors in simulations of the fragmentation of primordial gas. Nonetheless, we recommend using the accurate formulation of the H$_2,$ adiabatic index in primordial star formation studies since it is not computationally more expensive and provides a better treatment of the thermodynamics.



قيم البحث

اقرأ أيضاً

Magnetic fields play an important role for the formation of stars in both local and high-redshift galaxies. Recent studies of dynamo amplification in the first dark matter haloes suggest that significant magnetic fields were likely present during the formation of the first stars in the Universe at redshifts of 15 and above. In this work, we study how these magnetic fields potentially impact the initial mass function (IMF) of the first stars. We perform 200 high-resolution, three-dimensional (3D), magneto-hydrodynamic (MHD) simulations of the collapse of primordial clouds with different initial turbulent magnetic field strengths as predicted from turbulent dynamo theory in the early Universe, forming more than 1100 first stars in total. We detect a strong statistical signature of suppressed fragmentation in the presence of strong magnetic fields, leading to a dramatic reduction in the number of first stars with masses low enough that they might be expected to survive to the present day. Additionally, strong fields shift the transition point where stars go from being mostly single to mostly multiple to higher masses. However, irrespective of the field strength, individual simulations are highly chaotic, show different levels of fragmentation and clustering, and the outcome depends on the exact realisation of the turbulence in the primordial clouds. While these are still idealised simulations that do not start from cosmological initial conditions, our work shows that magnetic fields play a key role for the primordial IMF, potentially even more so than for the present-day IMF.
It has been shown that the behaviour of primordial gas collapsing in a dark matter minihalo can depend on the adopted choice of 3-body H$_2$ formation rate. The uncertainties in this rate span two orders of magnitude in the current literature, and so it remains a source of uncertainty in our knowledge of population III star formation. Here we investigate how the amount of fragmentation in primordial gas depends on the adopted 3-body rate. We present the results of calculations that follow the chemical and thermal evolution of primordial gas as it collapses in two dark matter minihalos. Our results on the effect of 3-body rate on the evolution until the first protostar forms agree well with previous studies. However, our modified version of GADGET-2 SPH also includes sink particles, which allows us to follow the initial evolution of the accretion disc that builds up on the centre of each halo, and capture the fragmentation in gas as well as its dependence on the adopted 3-body H$_2$ formation rate. We find that the fragmentation behaviour of the gas is only marginally effected by the choice of 3-body rate co-efficient, and that halo-to-halo differences are of equal importance in affecting the final mass distribution of stars.
How, when and where the first stars formed are fundamental questions regarding the epoch of Cosmic Dawn. A second order effect in the fluid equations was recently found to make a significant contribution: an offset velocity between gas and dark matte r, the so-called streaming velocity. Previous simulations of a limited number of low-mass dark matter haloes suggest that this streaming velocity can delay the formation of the first stars and decrease halo gas fractions and the halo mass function in the low mass regime. However, a systematic exploration of its effects in a large sample of haloes has been lacking until now. In this paper, we present results from a set of cosmological simulations of regions of the Universe with different streaming velocities performed with the moving mesh code AREPO. Our simulations have very high mass resolution, enabling us to accurately resolve minihaloes as small as $10^5 : {rm M_{odot}}$. We show that in the absence of streaming, the least massive halo that contains cold gas has a mass $M_{rm halo, min} = 5 times 10^{5} : {rm M_{odot}}$, but that cooling only becomes efficient in a majority of haloes for halo masses greater than $M_{rm halo,50%} = 1.6 times 10^6 : {rm M_{odot}}$. In regions with non-zero streaming velocities, $M_{rm halo, min}$ and $M_{rm halo,50%}$ both increase significantly, by around a factor of a few for each one sigma increase in the value of the local streaming velocity. As a result, in regions with streaming velocities $v_mathrm{stream} ge 3,sigma_mathrm{rms}$, cooling of gas in minihaloes is completely suppressed, implying that the first stars in these regions form within atomic cooling haloes.
The cosmic near-infrared background (NIRB) offers a powerful integral probe of radiative processes at different cosmic epochs, including the pre-reionization era when metal-free, Population III (Pop III) stars first formed. While the radiation from m etal-enriched, Population II (Pop II) stars likely dominates the contribution to the observed NIRB from the reionization era, Pop III stars -- if formed efficiently -- might leave characteristic imprints on the NIRB thanks to their strong Ly$alpha$ emission. Using a physically-motivated model of first star formation, we provide an analysis of the NIRB mean spectrum and anisotropy contributed by stellar populations at $z>5$. We find that in circumstances where massive Pop III stars persistently form in molecular cooling haloes at a rate of a few times $10^{-3},M_odot mathrm{yr}^{-1}$, before being suppressed towards the epoch of reionization (EoR) by the accumulated Lyman-Werner background, a unique spectral signature shows up redward of $1,mu$m in the observed NIRB spectrum sourced by galaxies at $z>5$. While the detailed shape and amplitude of the spectral signature depend on various factors including the star formation histories, IMF, LyC escape fraction and so forth, the most interesting scenarios with efficient Pop III star formation are within the reach of forthcoming facilities such as the Spectro-Photometer for the History of the Universe, Epoch of Reionization and Ices Explorer (SPHEREx). As a result, new constraints on the abundance and formation history of Pop III stars at high redshifts will be available through precise measurements of the NIRB in the next few years.
124 - Evan N. Kirby 2009
The hierarchical theory of galaxy formation rests on the idea that smaller galactic structures merge to form the galaxies that we see today. The past decade has provided remarkable observational support for this scenario, driven in part by advances i n spectroscopic instrumentation. Multi-object spectroscopy enabled the discovery of kinematically cold substructures around the Milky Way and M31 that are likely the debris of disrupting satellites. Improvements in high-resolution spectroscopy have produced key evidence that the abundance patterns of the Milky Way halo and its dwarf satellites can be explained by Galactic chemical evolution models based on hierarchical assembly. These breakthroughs have depended almost entirely on observations of nearby stars in the Milky Way and luminous red giant stars in M31 and Local Group dwarf satellites. In the next decade, extremely large telescopes will allow observations far down the luminosity function in the known dwarf galaxies, and they will enable observations of individual stars far out in the Galactic halo. The chemical abundance census now available for the Milky Way will become possible for our nearest neighbor, M31. Velocity dispersion measurements now available in M31 will become possible for systems beyond the Local Group such as Sculptor and M81 Group galaxies. Detailed studies of a greater number of individual stars in a greater number of spiral galaxies and their satellites will test hierarchical assembly in new ways because dynamical and chemical evolution models predict different outcomes for halos of different masses in different environments.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا