ترغب بنشر مسار تعليمي؟ اضغط هنا

R&D towards the CMS RPC Phase-2 upgrade

97   0   0.0 ( 0 )
 نشر من قبل Alexis Fagot
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The high pseudo-rapidity region of the CMS muon system is covered by Cathode Strip Chambers (CSC) only and lacks redundant coverage despite the fact that it is a challenging region for muons in terms of backgrounds and momentum resolution. In order to maintain good efficiency for the muon trigger in this region additional RPCs are planned to be installed in the two outermost stations at low angle named RE3/1 and RE4/1. These stations will use RPCs with finer granularity and good timing resolution to mitigate background effects and to increase the redundancy of the system.

قيم البحث

اقرأ أيضاً

During the third long shutdown of the CERN Large Hadron Collider, the CMS Detector will undergo a major upgrade to prepare for Phase-2 of the CMS physics program, starting around 2026. The upgraded CMS detector will be read out at an unprecedented da ta rate of up to 50 Tb/s with an event rate of 750 kHz, selected by the level-1 hardware trigger, and an average event size of 7.4 MB. Complete events will be analyzed by the High-Level Trigger (HLT) using software algorithms running on standard processing nodes, potentially augmented with hardware accelerators. Selected events will be stored permanently at a rate of up to 7.5 kHz for offline processing and analysis. This paper presents the baseline design of the DAQ and HLT systems for Phase-2, taking into account the projected evolution of high speed network fabrics for event building and distribution, and the anticipated performance of general purpose CPU. In addition, some opportunities offered by reading out and processing parts of the detector data at the full LHC bunch crossing rate (40 MHz) are discussed.
217 - Sebastian N. White 2014
The PhaseII Upgrades of CMS are being planned for the High Luminosity LHC (HL-LHC) era when the mean number of interactions per beam crossing (in-time pileup) is expected to reach ~140-200. The potential backgrounds arising from mis-associated jets a nd photon showers, for example, during event reconstruction could be reduced if physics objects are tagged with an event time. This tag is fully complementary to the event vertex which is already commonly used to reduce mis-reconstruction. Since the tracking vertex resolution is typically ~10^{-3} (50 micron/4.8cm) of the rms vertex distribution, whereas only ~10^{-1} (i.e. 20 vs.170 picoseconds (psec)) is demonstrated for timing, it is often assumed that only photon (i.e. EM calorimeter or shower-max) timing is of interest. We show that the optimal solution will likely be a single timing layer which measures both charged particle and photon time (a pre-shower layer).
The CMS muon system includes in both the barrel and endcap region Resistive Plate Chambers (RPC). They mainly serve as trigger detectors and also improve the reconstruction of muon parameters. Over the years, the instantaneous luminosity of the Large Hadron Collider gradually increases. During the LHC Phase 1 (~first 10 years of operation) an ultimate luminosity is expected above its design value of 10^34/cm^2/s at 14 TeV. To prepare the machine and also the experiments for this, two long shutdown periods are scheduled for 2013-2014 and 2018-2019. The CMS Collaboration is planning several detector upgrades during these long shutdowns. In particular, the muon detection system should be able to maintain a low-pT threshold for an efficient Level-1 Muon Trigger at high particle rates. One of the measures to ensure this, is to extend the present RPC system with the addition of a 4th layer in both endcap regions. During the first long shutdown, these two new stations will be equipped in the region |eta|<1.6 with 144 High Pressure Laminate (HPL) double-gap RPCs operating in avalanche mode, with a similar design as the existing CMS endcap chambers. Here, we present the upgrade plans for the CMS RPC system for the fist long shutdown, including trigger simulation studies for the extended system, and details on the new HPL production, the chamber assembly and the quality control procedures.
The expected radiation background in the CMS RPC system has been studied using the MC prediction with the CMS FLUKA simulation of the detector and the cavern. The MC geometry used in the analysis describes very accurately the present RPC system but s till does not include the complete description of the RPC upgrade region with pseudorapidity $1.9 < lvert eta rvert < 2.4$. Present results will be updated with the final geometry description, once it is available. The radiation background has been studied in terms of expected particle rates, absorbed dose and fluence. Two High Luminosity LHC (HL-LHC) scenarios have been investigated - after collecting $3000$ and $4000$ fb$^{-1}$. Estimations with safety factor of 3 have been considered, as well.
The CMS RPC muon detector utilizes a gas recirculation system called closed loop (CL) to cope with large gas mixture volumes and costs. A systematic study of CL gas purifiers has been carried out over 400 days between July 2008 and August 2009 at CER N in a low-radiation test area, with the use of RPC chambers with currents monitoring, and gas analysis sampling points. The study aimed to fully clarify the presence of pollutants, the chemistry of purifiers used in the CL, and the regeneration procedure. Preliminary results on contaminants release and purifier characterization are reported.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا