ﻻ يوجد ملخص باللغة العربية
Quasimodular forms were first studied in the context of counting torus coverings. Here we show that a weighted version of these coverings with Siegel-Veech weights also provides quasimodular forms. We apply this to prove conjectures of Eskin and Zorich on the large genus limits of Masur-Veech volumes and of Siegel-Veech constants. In Part I we connect the geometric definition of Siegel-Veech constants both with a combinatorial counting problem and with intersection numbers on Hurwitz spaces. We introduce modified Siegel-Veech weights whose generating functions will later be shown to be quasimodular. Parts II and III are devoted to the study of the quasimodularity of the generating functions arising from weighted counting of torus coverings. The starting point is the theorem of Bloch and Okounkov saying that q-brackets of shifted symmetric functions are quasimodular forms. In Part II we give an expression for their growth polynomials in terms of Gaussian integrals and use this to obtain a closed formula for the generating series of cumulants that is the basis for studying large genus asymptotics. In Part III we show that the even hook-length moments of partitions are shifted symmetric polynomials and prove a formula for the q-bracket of the product of such a hook-length moment with an arbitrary shifted symmetric polynomial. This formula proves quasimodularity also for the (-2)-nd hook-length moments by extrapolation, and implies the quasimodularity of the Siegel-Veech weighted counting functions. Finally, in Part IV these results are used to give explicit generating functions for the volumes and Siegel-Veech constants in the case of the principal stratum of abelian differentials. To apply these exact formulas to the Eskin-Zorich conjectures we provide a general framework for computing the asymptotics of rapidly divergent power series.
We prove the quasimodularity of generating functions for counting torus covers, with and without Siegel-Veech weight. Our proof is based on analyzing decompositions of flat surfaces into horizontal cylinders. The quasimodularity arise as contour inte
We state conjectures on the asymptotic behavior of the volumes of moduli spaces of Abelian differentials and their Siegel-Veech constants as genus tends to infinity. We provide certain numerical evidence, describe recent advances and the state of the art towards proving these conjectures.
In this paper we present an algorithm for computing Hecke eigensystems of Hilbert-Siegel cusp forms over real quadratic fields of narrow class number one. We give some illustrative examples using the quadratic field $Q(sqrt{5})$. In those examples, w
We present an explicit formula relating volumes of strata of meromorphicquadratic differentials with at most simple poles on Riemann surfacesand counting functions of the number of flat cylinders filled by closedgeodesics in associated flat metric wi
An Abelian differential gives rise to a flat structure (translation surface) on the underlying Riemann surface. In some directions the directional flow on the flat surface may contain a periodic region that is made up of maximal cylinders filled by p