ﻻ يوجد ملخص باللغة العربية
We theoretically address grazing incidence fast atom diffraction (GIFAD) for H atoms impinging on a LiF(001) surface. Our model combines a description of the H-LiF(001) interaction obtained from Density Functional Theory calculations with a semi-quantum treatment of the dynamics. We analyze simulated diffraction patterns in terms of the incidence channel, the impact energy associated with the motion normal to the surface, and the relevance of Van der Waals (VdW) interactions. We then contrast our simulations with experimental patterns for different incidence conditions. Our most important finding is that, for normal energies lower than 0.5 eV and incidence along the <100> channel, the inclusion of Van der Waals interactions in our potential energy surface yields a greatly improved accord between simulations and experiments. This agreement strongly suggests a non-negligible role of Van der Waals interactions in H/LiF(001) GIFAD in the low-to-intermediate normal energy regime.
Diffraction patterns produced by grazing scattering of fast atoms from insulator surfaces are used to examine the atom-surface interaction. The method is applied to He atoms colliding with a LiF(001) surface along axial crystallographic channels. The
Single crystalline samples of the van der Waals antiferromagnet CrPS4 were studied by measurements of specific heat and comprehensive anisotropic temperature- and magnetic field-dependent magnetization. In addition, measurements of the heat capacity
We report structural, physical properties and electronic structure of van der Waals (vdW) crystal VI3. Detailed analysis reveals that VI3 exhibits a structural transition from monoclinic C2/m to rhombohedral R-3 at Ts ~ 79 K, similar to CrX3 (X = Cl,
The exfoliation of two naturally occurring van der Waals minerals, graphite and molybdenite, arouse an unprecedented level of interest by the scientific community and shaped a whole new field of research: 2D materials research. Several years later, t
Molecular-scale manipulation of electronic/ionic charge accumulation in materials is a preeminent challenge, particularly in electrochemical energy storage. Layered van der Waals (vdW) crystals exemplify a diverse family of materials that permit ions