ﻻ يوجد ملخص باللغة العربية
We present the results of a spectroscopic search for narrow emission and absorption features in the X-ray spectra of long gamma-ray burst (GRB) afterglows. Using XMM-Newton data, both EPIC and RGS spectra, of six bright (fluence >10^{-7} erg cm^{-2}) and relatively nearby (z=0.54-1.41) GRBs, we performed a blind search for emission or absorption lines that could be related to a high cloud density or metal-rich gas in the environ close to the GRBs. We detected five emission features in four of the six GRBs with an overall statistical significance, assessed through Monte Carlo simulations, of <3.0 sigma. Most of the lines are detected around the observed energy of the oxygen edge at ~0.5 keV, suggesting that they are not related to the GRB environment but are most likely of Galactic origin. No significant absorption features were detected. A spectral fitting with a free Galactic column density (N_H) testing different models for the Galactic absorption confirms this origin because we found an indication of an excess of Galactic N_H in these four GRBs with respect to the tabulated values.
The detection of X-ray narrow spectral features in the 5-7 keV band is becoming increasingly more common in AGN observations, thanks to the capabilities of current X-ray satellites. Such lines, both in emission and in absorption, are mostly interpret
Analysis of observations with XMM-Newton have made a significant contribution to the study of Gamma-ray Burst (GRB) X-ray afterglows. The effective area, bandpass and resolution of the EPIC instrument permit the study of a wide variety of spectral fe
We co-added the available XMM-Newton RGS spectra for each of the isolated X-ray pulsars RX,J0720.4$-$3125, RX,J1308.6+2127 (RBS,1223), RX,J1605.3+3249 and RX,J1856.4$-$3754 (four members of the Magnificent Seven) and the Three Musketeers Geminga, PSR
We report the discovery of narrow X-ray absorption lines from the low-mass X-ray binary MXB1659-298 during an XMM-Newton observation in 2001 February. The 7.1 hr orbital cycle is clearly evident with narrow X-ray eclipses preceded by intense dipping
Neutron star mergers produce a substantial amount of fast-moving ejecta, expanding outwardly for years after the merger. The interaction of these ejecta with the surrounding medium may produce a weak isotropic radio remnant, detectable in relatively