ﻻ يوجد ملخص باللغة العربية
In this paper, we apply our sky map reconstruction method for transit type interferometers to the Tianlai cylinder array. The method is based on the spherical harmonic decomposition, and can be applied to cylindrical array as well as dish arrays and we can compute the instrument response, synthesised beam, transfer function and the noise power spectrum. We consider cylinder arrays with feed spacing larger than half wavelength, and as expected, we find that the arrays with regular spacing have grating lobes which produce spurious images in the reconstructed maps. We show that this problem can be overcome, using arrays with different feed spacing on each cylinder. We present the reconstructed maps, and study the performance in terms of noise power spectrum, transfer function and beams for both regular and irregular feed spacing configurations.
The Tianlai Cylinder Pathfinder is a radio interferometer array designed to test techniques for 21 cm intensity mapping in the post-reionization Universe, with the ultimate aim of mapping the large scale structure and measuring cosmological parameter
In 21~cm intensity mapping, the spectral smoothness of the foreground is exploited to separate it from the much weaker 21~cm signal. However, the non-smooth frequency response of the instrument complicates this process. Reflections and standing waves
The Tianlai Dish Pathfinder Array is a radio interferometer designed to test techniques for 21~cm intensity mapping in the post-reionization universe as a means for measuring large-scale cosmic structure. It performs drift scans of the sky at constan
We present the results of a recent re-reduction of the data from the Very Large Array (VLA) Low-frequency Sky Survey (VLSS). We used the VLSS catalog as a sky model to correct the ionospheric distortions in the data and create a new set of sky maps a
This paper presents a search for radio transients at a frequency of 73.8 MHz (4 m wavelength) using the all-sky imaging capabilities of the Long Wavelength Demonstrator Array (LWDA). The LWDA was a 16-dipole phased array telescope, located on the sit