ﻻ يوجد ملخص باللغة العربية
Identifying the most influential spreaders that maximize information flow is a central question in network theory. Recently, a scalable method called Collective Influence (CI) has been put forward through collective influence maximization. In contrast to heuristic methods evaluating nodes significance separately, CI method inspects the collective influence of multiple spreaders. Despite that CI applies to the influence maximization problem in percolation model, it is still important to examine its efficacy in realistic information spreading. Here, we examine real-world information flow in various social and scientific platforms including American Physical Society, Facebook, Twitter and LiveJournal. Since empirical data cannot be directly mapped to ideal multi-source spreading, we leverage the behavioral patterns of users extracted from data to construct virtual information spreading processes. Our results demonstrate that the set of spreaders selected by CI can induce larger scale of information propagation. Moreover, local measures as the number of connections or citations are not necessarily the deterministic factors of nodes importance in realistic information spreading. This result has significance for rankings scientists in scientific networks like the APS, where the commonly used number of citations can be a poor indicator of the collective influence of authors in the community.
How to identify influential nodes in social networks is of theoretical significance, which relates to how to prevent epidemic spreading or cascading failure, how to accelerate information diffusion, and so on. In this Letter, we make an attempt to fi
Measuring and optimizing the influence of nodes in big-data online social networks are important for many practical applications, such as the viral marketing and the adoption of new products. As the viral spreading on social network is a global proce
In this Letter, we empirically study the influence of reciprocal links, in order to understand its role in affecting the structure and function of directed social networks. Experimental results on two representative datesets, Sina Weibo and Douban, d
Social networks constitute a new platform for information propagation, but its success is crucially dependent on the choice of spreaders who initiate the spreading of information. In this paper, we remove edges in a network at random and the network
In this paper, we discuss the possible generalizations of the Social Influence with Recurrent Mobility (SIRM) model developed in Phys. Rev. Lett. 112, 158701 (2014). Although the SIRM model worked approximately satisfying when US election was modelle