ﻻ يوجد ملخص باللغة العربية
We give an algebraic proof of properness of moduli stacks of gauged maps satisfying a stability conditition introduced by Mundet and Schmitt. The proof combines a git construction of Schmitt, properness for twisted stable maps by Abramovich-Vistoli, a variation of a boundedness argument due to Ciocan-Fontanine-Kim-Maulik, and a removal of singularities for bundles on surfaces in Colliot-Thel`ene-Sansuc.
We give an introduction to moduli stacks of gauged maps satisfying a stability conditition introduced by Mundet and Schmitt, and the associated integrals giving rise to gauged Gromov-Witten invariants. We survey various applications to cohomological and K-theoretic Gromov-Witten invariants.
For $2$ vectors $x,yin mathbb{R}^m$, we use the notation $x * y =(x_1y_1,ldots ,x_my_m)$, and if $x=y$ we also use the notation $x^2=x*x$ and define by induction $x^k=x*(x^{k-1})$. We use $<,>$ for the usual inner product on $mathbb{R}^m$. For $A$ an
This paper develops our previous work on properness of a class of maps related to the Jacobian conjecture. The paper has two main parts: - In part 1, we explore properties of the set of non-proper values $S_f$ (as introduced by Z. Jelonek) of these
We establish an algebraic approach to prove the properness of moduli spaces of K-polystable Fano varieties and reduce the problem to a conjecture on destabilizations of K-unstable Fano varieties. Specifically, we prove that if the stability threshold
Let $S$ be the special fibre of a Shimura variety of Hodge type, with good reduction at a place above $p$. We give an alternative construction of the zip period map for $S$, which is used to define the Ekedahl-Oort strata of $S$. The method employed is local, $p$-adic, and group-theoretic in nature.