ﻻ يوجد ملخص باللغة العربية
Let $S$ be the special fibre of a Shimura variety of Hodge type, with good reduction at a place above $p$. We give an alternative construction of the zip period map for $S$, which is used to define the Ekedahl-Oort strata of $S$. The method employed is local, $p$-adic, and group-theoretic in nature.
Let $F$ be a totally real field in which $p$ is unramified. We study the Goren-Oort stratification of the special fibers of quaternionic Shimura varieties over a place above $p$. We show that each stratum is a $(mathbb{P}^1)^N$-bundle over other quat
We elaborate the theory of the stable Bernstein center of a $p$-adic group $G$, and apply it to state a general conjecture on test functions for Shimura varieties due to the author and R. Kottwitz. This conjecture provides a framework by which one mi
We survey some recent work on the geometric Satake of p-adic groups and its applications to some arithmetic problems of Shimura varieties. We reformulate a few constructions appeared in the previous works more conceptually.
The goal of this paper is to calculate the trace of the composition of a Hecke correspondence and a (high enough) power of the Frobenius at a good place on the intersection cohomology of the Satake-Baily-Borel compactification of certain Shimura vari
Let $Sh_K(G,mu)$ be a Shimura variety of KHT type, as introduced in Harris-Taylor book, associated to some similitude group $G/mathbb Q$ and a open compact subgroup $K$ of $G(mathbb A)$. For any irreducible algebraic $overline{mathbb Q}_l$-representa