ﻻ يوجد ملخص باللغة العربية
In this work, we investigate several neural network architectures for fine-grained entity type classification. Particularly, we consider extensions to a recently proposed attentive neural architecture and make three key contributions. Previous work on attentive neural architectures do not consider hand-crafted features, we combine learnt and hand-crafted features and observe that they complement each other. Additionally, through quantitative analysis we establish that the attention mechanism is capable of learning to attend over syntactic heads and the phrase containing the mention, where both are known strong hand-crafted features for our task. We enable parameter sharing through a hierarchical label encoding method, that in low-dimensional projections show clear clusters for each type hierarchy. Lastly, despite using the same evaluation dataset, the literature frequently compare models trained using different data. We establish that the choice of training data has a drastic impact on performance, with decreases by as much as 9.85% loose micro F1 score for a previously proposed method. Despite this, our best model achieves state-of-the-art results with 75.36% loose micro F1 score on the well- established FIGER (GOLD) dataset.
In this work we propose a novel attention-based neural network model for the task of fine-grained entity type classification that unlike previously proposed models recursively composes representations of entity mention contexts. Our model achieves st
Neural entity linking models are very powerful, but run the risk of overfitting to the domain they are trained in. For this problem, a domain is characterized not just by genre of text but even by factors as specific as the particular distribution of
As an effective approach to tune pre-trained language models (PLMs) for specific tasks, prompt-learning has recently attracted much attention from researchers. By using textit{cloze}-style language prompts to stimulate the versatile knowledge of PLMs
Conventional entity typing approaches are based on independent classification paradigms, which make them difficult to recognize inter-dependent, long-tailed and fine-grained entity types. In this paper, we argue that the implicitly entailed extrinsic
Neural entity typing models typically represent fine-grained entity types as vectors in a high-dimensional space, but such spaces are not well-suited to modeling these types complex interdependencies. We study the ability of box embeddings, which emb