ﻻ يوجد ملخص باللغة العربية
We study linear and nonlinear stability of asymptotically AdS$_4$ solutions in Einstein-Maxwell-scalar theory. After summarizing the set of static solutions we first examine thermodynamical stability in the grand canonical ensemble and the phase transitions that occur among them. In the second part of the paper we focus on nonlinear stability in the microcanonical ensemble by evolving radial perturbations numerically. We find hints of an instability corner for vanishingly small perturbations of the same kind as the ones present in the uncharged case. Collapses are avoided, instead, if the charge and mass of the perturbations come to close the line of solitons. Finally we examine the soliton solutions. The linear spectrum of normal modes is not resonant and instability turns on at extrema of the mass curve. Linear stability extends to nonlinear stability up to some threshold for the amplitude of the perturbation. Beyond that, the soliton is destroyed and collapses to a hairy black hole. The relative width of this stability band scales down with the charge Q, and does not survive the blow up limit to a planar geometry.
We present the first proof-of-principle Cauchy evolutions of asymptotically global AdS spacetimes with no imposed symmetries, employing a numerical scheme based on the generalized harmonic form of the Einstein equations. In this scheme, the main diff
We present results from the evolution of spacetimes that describe the merger of asymptotically global AdS black holes in 5D with an SO(3) symmetry. Prompt scalar field collapse provides us with a mechanism for producing distinct trapped regions on th
We numerically simulate gravitational collapse in asymptotically anti-de Sitter spacetimes away from spherical symmetry. Starting from initial data sourced by a massless real scalar field, we solve the Einstein equations with a negative cosmological
We construct a family of very simple stationary solutions to gravity coupled to a massless scalar field in global AdS. They involve a constantly rising source for the scalar field at the boundary and thereby we name them pumping solutions. We constru
Recently it has been argued that in Einstein gravity Anti-de Sitter spacetime is unstable against the formation of black holes for a large class of arbitrarily small perturbations. We examine the effects of including a Gauss-Bonnet term. In five dime