ﻻ يوجد ملخص باللغة العربية
Given a musical audio recording, the goal of automatic music transcription is to determine a score-like representation of the piece underlying the recording. Despite significant interest within the research community, several studies have reported on a glass ceiling effect, an apparent limit on the transcription accuracy that current methods seem incapable of overcoming. In this paper, we explore how much this effect can be mitigated by focusing on a specific instrument class and making use of additional information on the recording conditions available in studio or home recording scenarios. In particular, exploiting the availability of single note recordings for the instrument in use we develop a novel signal model employing variable-length spectro-temporal patterns as its central building blocks - tailored for pitched percussive instruments such as the piano. Temporal dependencies between spectral templates are modeled, resembling characteristics of factorial scaled hidden Markov models (FS-HMM) and other methods combining Non-Negative Matrix Factorization with Markov processes. In contrast to FS-HMMs, our parameter estimation is developed in a global, relaxed form within the extensible alternating direction method of multipliers (ADMM) framework, which enables the systematic combination of basic regularizers propagating sparsity and local stationarity in note activity with more complex regularizers imposing temporal semantics. The proposed method achieves an f-measure of 93-95% for note onsets on pieces recorded on a Yamaha Disklavier (MAPS DB).
Automatic Music Transcription has seen significant progress in recent years by training custom deep neural networks on large datasets. However, these models have required extensive domain-specific design of network architectures, input/output represe
A central goal in automatic music transcription is to detect individual note events in music recordings. An important variant is instrument-dependent music transcription where methods can use calibration data for the instruments in use. However, desp
Most of the state-of-the-art automatic music transcription (AMT) models break down the main transcription task into sub-tasks such as onset prediction and offset prediction and train them with onset and offset labels. These predictions are then conca
Detecting piano pedalling techniques in polyphonic music remains a challenging task in music information retrieval. While other piano-related tasks, such as pitch estimation and onset detection, have seen improvement through applying deep learning me
We propose AD3, a new algorithm for approximate maximum a posteriori (MAP) inference on factor graphs based on the alternating directions method of multipliers. Like dual decomposition algorithms, AD3 uses worker nodes to iteratively solve local subp