ترغب بنشر مسار تعليمي؟ اضغط هنا

Piano Transcription in the Studio Using an Extensible Alternating Directions Framework

155   0   0.0 ( 0 )
 نشر من قبل Sebastian Ewert
 تاريخ النشر 2016
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Given a musical audio recording, the goal of automatic music transcription is to determine a score-like representation of the piece underlying the recording. Despite significant interest within the research community, several studies have reported on a glass ceiling effect, an apparent limit on the transcription accuracy that current methods seem incapable of overcoming. In this paper, we explore how much this effect can be mitigated by focusing on a specific instrument class and making use of additional information on the recording conditions available in studio or home recording scenarios. In particular, exploiting the availability of single note recordings for the instrument in use we develop a novel signal model employing variable-length spectro-temporal patterns as its central building blocks - tailored for pitched percussive instruments such as the piano. Temporal dependencies between spectral templates are modeled, resembling characteristics of factorial scaled hidden Markov models (FS-HMM) and other methods combining Non-Negative Matrix Factorization with Markov processes. In contrast to FS-HMMs, our parameter estimation is developed in a global, relaxed form within the extensible alternating direction method of multipliers (ADMM) framework, which enables the systematic combination of basic regularizers propagating sparsity and local stationarity in note activity with more complex regularizers imposing temporal semantics. The proposed method achieves an f-measure of 93-95% for note onsets on pieces recorded on a Yamaha Disklavier (MAPS DB).



قيم البحث

اقرأ أيضاً

Automatic Music Transcription has seen significant progress in recent years by training custom deep neural networks on large datasets. However, these models have required extensive domain-specific design of network architectures, input/output represe ntations, and complex decoding schemes. In this work, we show that equivalent performance can be achieved using a generic encoder-decoder Transformer with standard decoding methods. We demonstrate that the model can learn to translate spectrogram inputs directly to MIDI-like output events for several transcription tasks. This sequence-to-sequence approach simplifies transcription by jointly modeling audio features and language-like output dependencies, thus removing the need for task-specific architectures. These results point toward possibilities for creating new Music Information Retrieval models by focusing on dataset creation and labeling rather than custom model design.
A central goal in automatic music transcription is to detect individual note events in music recordings. An important variant is instrument-dependent music transcription where methods can use calibration data for the instruments in use. However, desp ite the additional information, results rarely exceed an f-measure of 80%. As a potential explanation, the transcription problem can be shown to be badly conditioned and thus relies on appropriate regularization. A recently proposed method employs a mixture of simple, convex regularizers (to stabilize the parameter estimation process) and more complex terms (to encourage more meaningful structure). In this paper, we present two extensions to this method. First, we integrate a computational loudness model to better differentiate real from spurious note detections. Second, we employ (Bidirectional) Long Short Term Memory networks to re-weight the likelihood of detected note constellations. Despite their simplicity, our two extensions lead to a drop of about 35% in note error rate compared to the state-of-the-art.
Most of the state-of-the-art automatic music transcription (AMT) models break down the main transcription task into sub-tasks such as onset prediction and offset prediction and train them with onset and offset labels. These predictions are then conca tenated together and used as the input to train another model with the pitch labels to obtain the final transcription. We attempt to use only the pitch labels (together with spectrogram reconstruction loss) and explore how far this model can go without introducing supervised sub-tasks. In this paper, we do not aim at achieving state-of-the-art transcription accuracy, instead, we explore the effect that spectrogram reconstruction has on our AMT model. Our proposed model consists of two U-nets: the first U-net transcribes the spectrogram into a posteriorgram, and a second U-net transforms the posteriorgram back into a spectrogram. A reconstruction loss is applied between the original spectrogram and the reconstructed spectrogram to constrain the second U-net to focus only on reconstruction. We train our model on three different datasets: MAPS, MAESTRO, and MusicNet. Our experiments show that adding the reconstruction loss can generally improve the note-level transcription accuracy when compared to the same model without the reconstruction part. Moreover, it can also boost the frame-level precision to be higher than the state-of-the-art models. The feature maps learned by our U-net contain gridlike structures (not present in the baseline model) which implies that with the presence of the reconstruction loss, the model is probably trying to count along both the time and frequency axis, resulting in a higher note-level transcription accuracy.
Detecting piano pedalling techniques in polyphonic music remains a challenging task in music information retrieval. While other piano-related tasks, such as pitch estimation and onset detection, have seen improvement through applying deep learning me thods, little work has been done to develop deep learning models to detect playing techniques. In this paper, we propose a transfer learning approach for the detection of sustain-pedal techniques, which are commonly used by pianists to enrich the sound. In the source task, a convolutional neural network (CNN) is trained for learning spectral and temporal contexts when the sustain pedal is pressed using a large dataset generated by a physical modelling virtual instrument. The CNN is designed and experimented through exploiting the knowledge of piano acoustics and physics. This can achieve an accuracy score of 0.98 in the validation results. In the target task, the knowledge learned from the synthesised data can be transferred to detect the sustain pedal in acoustic piano recordings. A concatenated feature vector using the activations of the trained convolutional layers is extracted from the recordings and classified into frame-wise pedal press or release. We demonstrate the effectiveness of our method in acoustic piano recordings of Chopins music. From the cross-validation results, the proposed transfer learning method achieves an average F-measure of 0.89 and an overall performance of 0.84 obtained using the micro-averaged F-measure. These results outperform applying the pre-trained CNN model directly or the model with a fine-tuned last layer.
We propose AD3, a new algorithm for approximate maximum a posteriori (MAP) inference on factor graphs based on the alternating directions method of multipliers. Like dual decomposition algorithms, AD3 uses worker nodes to iteratively solve local subp roblems and a controller node to combine these local solutions into a global update. The key characteristic of AD3 is that each local subproblem has a quadratic regularizer, leading to a faster consensus than subgradient-based dual decomposition, both theoretically and in practice. We provide closed-form solutions for these AD3 subproblems for binary pairwise factors and factors imposing first-order logic constraints. For arbitrary factors (large or combinatorial), we introduce an active set method which requires only an oracle for computing a local MAP configuration, making AD3 applicable to a wide range of problems. Experiments on synthetic and realworld problems show that AD3 compares favorably with the state-of-the-art.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا