ﻻ يوجد ملخص باللغة العربية
$Om(z)$ is a diagnostic approach to distinguish dark energy models. However, there are few articles to discuss what is the distinguishing criterion. In this paper, firstly we smooth the latest observational $H(z)$ data using a model-independent method -- Gaussian processes, and then reconstruct the $Om(z)$ and its fist order derivative $mathcal{L}^{(1)}_m$. Such reconstructions not only could be the distinguishing criteria, but also could be used to estimate the authenticity of models. We choose some popular models to study, such as $Lambda$CDM, generalized Chaplygin gas (GCG) model, Chevallier-Polarski-Linder (CPL) parametrization and Jassal-Bagla-Padmanabhan (JBP) parametrization. We plot the trajectories of $Om(z)$ and $mathcal{L}^{(1)}_m$ with $1 sigma$ confidence level of these models, and compare them to the reconstruction from $H(z)$ data set. The result indicates that the $H(z)$ data does not favor the CPL and JBP models at $1 sigma$ confidence level. Strangely, in high redshift range, the reconstructed $mathcal{L}^{(1)}_m$ has a tendency of deviation from theoretical value, which demonstrates these models are disagreeable with high redshift $H(z)$ data. This result supports the conclusions of Sahni et al. citep{sahni2014model} and Ding et al. citep{ding2015there} that the $Lambda$CDM may not be the best description of our universe.
We describe a new class of dark energy (DE) models which behave like cosmological trackers at early times. These models are based on the $alpha$-attractor set of potentials, originally discussed in the context of inflation. The new models allow the c
We here study extended classes of logotropic fluids as textit{unified dark energy models}. Under the hypothesis of the Anton-Schmidt scenario, we consider the universe obeying a single fluid whose pressure evolves through a logarithmic equation of st
The origin of accelerating expansion of the Universe is one the biggest conundrum of fundamental physics. In this paper we review vacuum energy issues as the origin of accelerating expansion - generally called dark energy - and give an overview of al
We propose a dark energy model with a logarithmic cosmological fluid which can result in a very small current value of the dark energy density and avoid the coincidence problem without much fine-tuning. We construct a couple of dynamical models that
Non-canonical scalar fields with the Lagrangian ${cal L} = X^alpha - V(phi)$, possess the attractive property that the speed of sound, $c_s^{2} = (2,alpha - 1)^{-1}$, can be exceedingly small for large values of $alpha$. This allows a non-canonical f